May  2014, 34(5): 1933-1949. doi: 10.3934/dcds.2014.34.1933

Period 3 and chaos for unimodal maps

1. 

Department of Applied Mathematics, Chung Yuan Christian University, Chungli, Taiwan, Taiwan

2. 

Department of Financial and Computational Mathematics, Providence University, Taichung, Taiwan

Received  January 2013 Revised  July 2013 Published  October 2013

In this paper we study unimodal maps on the closed unit interval, which have a stable period 3 orbit and an unstable period 3 orbit, and give conditions under which all points in the open unit interval are either asymptotic to the stable period 3 orbit or land after a finite time on an invariant Cantor set $\Lambda$ on which the dynamics is conjugate to a subshift of finite type and is, in fact, chaotic. For the particular value of $\mu=3.839$, Devaney [3], following ideas of Smale and Williams, shows that the logistic map $f(x)=\mu x(1-x)$ has this property. In this case the stable and unstable period 3 orbits appear when $\mu=\mu_0=1+\sqrt{8}$. We use our theorem to show that the property holds for all values of $\mu>\mu_0$ for which the stable period 3 orbit persists.
Citation: Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933
References:
[1]

B. Aulbach and B. Kieninger, An elementary proof for hyperbolicity and chaos of the logistic maps,, J. Difference Eqns. Appl., 10 (2004), 1243.   Google Scholar

[2]

L. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Mathematics 1513, (1513).   Google Scholar

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, Second edition. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company, (1989).   Google Scholar

[4]

B. Hasselblatt and A. Katok, A First Course in Dynamics: With a Panorama of Recent Developments,, Cambridge University Press, (2003).   Google Scholar

[5]

R. L. Kraft, Chaos, Cantor sets, and hyperbolicity for the logistic maps,, Amer. Math. Monthly, 106 (1999), 400.  doi: 10.2307/2589144.  Google Scholar

[6]

T.-Y. Li and J. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[7]

A. N. Sharkovsky, Co-existence of cycles of a continuous mapping of the line into itself,, Ukrain. Math. J., 16 (1964), 61.   Google Scholar

[8]

D. Singer, Stable orbits and bifurcation of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.  doi: 10.1137/0135020.  Google Scholar

[9]

X. Zhang, Y. Shi and G. Chen, Some properties of coupled-expanding maps in compact sets,, Proc. Amer. Math. Soc., 141 (2013), 585.  doi: 10.1090/S0002-9939-2012-11339-5.  Google Scholar

show all references

References:
[1]

B. Aulbach and B. Kieninger, An elementary proof for hyperbolicity and chaos of the logistic maps,, J. Difference Eqns. Appl., 10 (2004), 1243.   Google Scholar

[2]

L. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Mathematics 1513, (1513).   Google Scholar

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, Second edition. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company, (1989).   Google Scholar

[4]

B. Hasselblatt and A. Katok, A First Course in Dynamics: With a Panorama of Recent Developments,, Cambridge University Press, (2003).   Google Scholar

[5]

R. L. Kraft, Chaos, Cantor sets, and hyperbolicity for the logistic maps,, Amer. Math. Monthly, 106 (1999), 400.  doi: 10.2307/2589144.  Google Scholar

[6]

T.-Y. Li and J. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[7]

A. N. Sharkovsky, Co-existence of cycles of a continuous mapping of the line into itself,, Ukrain. Math. J., 16 (1964), 61.   Google Scholar

[8]

D. Singer, Stable orbits and bifurcation of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.  doi: 10.1137/0135020.  Google Scholar

[9]

X. Zhang, Y. Shi and G. Chen, Some properties of coupled-expanding maps in compact sets,, Proc. Amer. Math. Soc., 141 (2013), 585.  doi: 10.1090/S0002-9939-2012-11339-5.  Google Scholar

[1]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[8]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[9]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[14]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]