May  2014, 34(5): 1951-1959. doi: 10.3934/dcds.2014.34.1951

An extended discrete Hardy-Littlewood-Sobolev inequality

1. 

Department of Applied Mathematics, University of Colorado at Boulder, Colorado, United States, United States

Received  May 2013 Revised  July 2013 Published  October 2013

Hardy-Littlewood-Sobolev (HLS) Inequality fails in the ``critical'' case: $μ=n$. However, for discrete HLS, we can derive a finite form of HLS inequality with logarithm correction for a critical case: $μ=n$ and $p=q$, by limiting the inequality on a finite domain. The best constant in the inequality and its corresponding solution, the optimizer, are studied. First, we obtain a sharp estimate for the best constant. Then for the optimizer, we prove the uniqueness and a symmetry property. This is achieved by proving that the corresponding Euler-Lagrange equation has a unique nontrivial nonnegative critical point. Also, by using a discrete version of maximum principle, we prove certain monotonicity of this optimizer.
Citation: Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951
References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations, Discrete and Continuous Dynamical Systems, (2005), 164-172.  Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems, 3 (1997), 333-340. doi: 10.3934/dcds.1997.3.333.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm Pure Appl Anal, 4 (2005), 1-8.  Google Scholar

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. & Cont. Dynamics Sys., 12 (2005), 347-354.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$, Mathematical Analysis and Applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res Lett, 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge at the University Press, 1952.  Google Scholar

[16]

J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.  Google Scholar

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Commun. Pure Appl. Anal, 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality, Acta Mathematica Scientia, 31 (2011), 2285-2288. doi: 10.1016/S0252-9602(11)60400-1.  Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar

[22]

O. Perron, Zur Theorie der Matrices, Mathematische Annalen, 64 (1907), 248-263. doi: 10.1007/BF01449896.  Google Scholar

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. doi: 10.1512/iumj.1958.7.57030.  Google Scholar

show all references

References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations, Discrete and Continuous Dynamical Systems, (2005), 164-172.  Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems, 3 (1997), 333-340. doi: 10.3934/dcds.1997.3.333.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm Pure Appl Anal, 4 (2005), 1-8.  Google Scholar

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. & Cont. Dynamics Sys., 12 (2005), 347-354.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$, Mathematical Analysis and Applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res Lett, 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge at the University Press, 1952.  Google Scholar

[16]

J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.  Google Scholar

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Commun. Pure Appl. Anal, 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality, Acta Mathematica Scientia, 31 (2011), 2285-2288. doi: 10.1016/S0252-9602(11)60400-1.  Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar

[22]

O. Perron, Zur Theorie der Matrices, Mathematische Annalen, 64 (1907), 248-263. doi: 10.1007/BF01449896.  Google Scholar

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. doi: 10.1512/iumj.1958.7.57030.  Google Scholar

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[4]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[5]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[6]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[7]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[8]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[9]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[10]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[11]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[12]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[13]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[14]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[15]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[16]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[17]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[18]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[19]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[20]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]