May  2014, 34(5): 1951-1959. doi: 10.3934/dcds.2014.34.1951

An extended discrete Hardy-Littlewood-Sobolev inequality

1. 

Department of Applied Mathematics, University of Colorado at Boulder, Colorado, United States, United States

Received  May 2013 Revised  July 2013 Published  October 2013

Hardy-Littlewood-Sobolev (HLS) Inequality fails in the ``critical'' case: $μ=n$. However, for discrete HLS, we can derive a finite form of HLS inequality with logarithm correction for a critical case: $μ=n$ and $p=q$, by limiting the inequality on a finite domain. The best constant in the inequality and its corresponding solution, the optimizer, are studied. First, we obtain a sharp estimate for the best constant. Then for the optimizer, we prove the uniqueness and a symmetry property. This is achieved by proving that the corresponding Euler-Lagrange equation has a unique nontrivial nonnegative critical point. Also, by using a discrete version of maximum principle, we prove certain monotonicity of this optimizer.
Citation: Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951
References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations,, Discrete and Continuous Dynamical Systems, (2005), 164.   Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain,, Discrete Contin. Dynam. Systems, 3 (1997), 333.  doi: 10.3934/dcds.1997.3.333.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm Pure Appl Anal, 4 (2005), 1.   Google Scholar

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347.   Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$,, Mathematical Analysis and Applications, (1981), 369.   Google Scholar

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge at the University Press, (1952).   Google Scholar

[16]

J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547.  doi: 10.3934/dcds.2011.30.547.  Google Scholar

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal, 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality,, Acta Mathematica Scientia, 31 (2011), 2285.  doi: 10.1016/S0252-9602(11)60400-1.  Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[22]

O. Perron, Zur Theorie der Matrices,, Mathematische Annalen, 64 (1907), 248.  doi: 10.1007/BF01449896.  Google Scholar

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.  doi: 10.1512/iumj.1958.7.57030.  Google Scholar

show all references

References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations,, Discrete and Continuous Dynamical Systems, (2005), 164.   Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain,, Discrete Contin. Dynam. Systems, 3 (1997), 333.  doi: 10.3934/dcds.1997.3.333.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm Pure Appl Anal, 4 (2005), 1.   Google Scholar

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347.   Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$,, Mathematical Analysis and Applications, (1981), 369.   Google Scholar

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge at the University Press, (1952).   Google Scholar

[16]

J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547.  doi: 10.3934/dcds.2011.30.547.  Google Scholar

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal, 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality,, Acta Mathematica Scientia, 31 (2011), 2285.  doi: 10.1016/S0252-9602(11)60400-1.  Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[22]

O. Perron, Zur Theorie der Matrices,, Mathematische Annalen, 64 (1907), 248.  doi: 10.1007/BF01449896.  Google Scholar

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.  doi: 10.1512/iumj.1958.7.57030.  Google Scholar

[1]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[20]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]