\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension

Abstract / Introduction Related Papers Cited by
  • For the $L^2$ supercritical generalized Korteweg-de Vries equation, we proved in [2] the existence and uniqueness of an $N$-parameter family of $N$-solitons. Recall that, for any $N$ given solitons, we call $N$-soliton a solution of the equation which behaves as the sum of these $N$ solitons asymptotically as $t \to +\infty$. In the present paper, we also construct an $N$-parameter family of $N$-solitons for the supercritical nonlinear Schrödinger equation in dimension $1$. Nevertheless, we do not obtain any classification result; but recall that, even in subcritical and critical cases, no general uniqueness result has been proved yet.
    Mathematics Subject Classification: Primary: 35Q55, 35Q51; Secondary: 35B40, 37K40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Analysis, 14 (1990), 807-836.doi: 10.1016/0362-546X(90)90023-A.

    [2]

    V. Combet, Multi-soliton solutions for the supercritical gKdV equations, Communications in Partial Differential Equations, 36 (2011), 380-419.doi: 10.1080/03605302.2010.503770.

    [3]

    R. Côte, Y. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Revista Matematica Iberoamericana, 27 (2011), 273-302.doi: 10.4171/RMI/636.

    [4]

    T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geometric and Functional Analysis, 18 (2009), 1787-1840.doi: 10.1007/s00039-009-0707-x.

    [5]

    T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation, Revista Matematica Iberoamericana, 26 (2010), 1-56.doi: 10.4171/RMI/592.

    [6]

    J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, Journal of Functional Analysis, 32 (1979), 1-32.doi: 10.1016/0022-1236(79)90076-4.

    [7]

    M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional hamiltonian system, Communications on Pure and Applied Mathematics, 43 (1990), 299-333.doi: 10.1002/cpa.3160430302.

    [8]

    M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry. I, Journal of Functional Analysis, 74 (1987), 160-197.doi: 10.1016/0022-1236(87)90044-9.

    [9]

    Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, American Journal of Mathematics, 127 (2005), 1103-1140.doi: 10.1353/ajm.2005.0033.

    [10]

    Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Annales de l'Institut Henri Poincaré/Analyse non linéaire, 23 (2006), 849-864.doi: 10.1016/j.anihpc.2006.01.001.

    [11]

    Y. Martel, F. Merle and T.-P. Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Mathematical Journal, 133 (2006), 405-466.doi: 10.1215/S0012-7094-06-13331-8.

    [12]

    F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Communications in Mathematical Physics, 129 (1990), 223-240.doi: 10.1007/BF02096981.

    [13]

    F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u + |u|^{p-1}u$, Duke Mathematical Journal, 86 (1997), 143-195.doi: 10.1215/S0012-7094-97-08605-1.

    [14]

    G. Perelman, Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations, Mathematical Topics, 14 (1997), 78-137.

    [15]

    G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Communications in Partial Differential Equations, 29 (2004), 1051-1095.doi: 10.1081/PDE-200033754.

    [16]

    I. Rodnianski, W. Schlag and A. SofferAsymptotic Stability of N-soliton States of NLS, preprint, arXiv:math/0309114.

    [17]

    M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM Journal on Mathematical Analysis, 16 (1985), 472-491.doi: 10.1137/0516034.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return