\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence analysis of the vortex blob method for the $b$-equation

Abstract / Introduction Related Papers Cited by
  • In this paper, we prove the convergence of the vortex blob method for a family of nonlinear evolutionary partial differential equations (PDEs), the so-called b-equation. This kind of PDEs, including the Camassa-Holm equation and the Degasperis-Procesi equation, has many applications in diverse scientific fields. Our convergence analysis also provides a proof for the existence of the global weak solution to the b-equation when the initial data is a nonnegative Radon measure with compact support.
    Mathematics Subject Classification: Primary: 35B65, 35C08, 35D30, 37K10, 65M75, 76B15; Secondary: 35Q51.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. T. Beale and A. Majda, Vortex methods II: Higher order accuracy in two and three dimensions, Math. Comput., 39 (1982), 29-52.doi: 10.2307/2007618.

    [2]

    A. Bressan, Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.

    [3]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [4]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [5]

    R. Camassa, J. Huang and L. Lee, Integral and integrable algorithms for a nonlinear shallow water wave equation, J. Comput. Phys., 216 (2006), 547-572.doi: 10.1016/j.jcp.2005.12.013.

    [6]

    D. Chae and J.-G. Liu, Blow-up,Zero Alpha limit and the Liouville type theorem for the Euler-Poincaré equations, Comm. Math. Phys., 314 (2012), 671-687.doi: 10.1007/s00220-012-1534-8.

    [7]

    A. Chertock, P. Du Toit and J. Marsden, Integration of the EPDiff equation by particle methods, ESAIM Math. Model. Numer. Anal., 46 (2012), 515-534.doi: 10.1051/m2an/2011054.

    [8]

    A. Chertock, J.-G. Liu and T. Pendleton, Convergence analysis of a particle method and global weak solutions of a family of evolutionary PDEs, SIAM J. Numer. Anal., 50 (2012), 1-21.doi: 10.1137/110831386.

    [9]

    G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91.doi: 10.1016/j.jfa.2005.07.008.

    [10]

    G. M. Coclite, K. H. Karlsen and N. H. Risebro, A convregent finite defference scheme for the Camassa-Holm equation with general $H^1$ initial data, SIAM J. Numer. Anal., 46 (2008), 1554-1579.doi: 10.1137/060673242.

    [11]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [12]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [13]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [14]

    A. Constantin and L. Molinet, Global weak solutions for a shallow water wave equation, Comm. Math. Phys., 211 (2000), 45-61.doi: 10.1007/s002200050801.

    [15]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

    [16]

    G. H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, 2000.doi: 10.1017/CBO9780511526442.

    [17]

    H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373.

    [18]

    A. Degasperis and M. Procesi, Asymptotic Integrability, Symmetry and perturbation theory (Rome, 1998), 23-37, World Sci. Publ., River Edge, NJ, 1999.

    [19]

    A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, (Russian) Teoret. Mat. Fiz., 133 (2002), 170-183; translation in Theoret. and Math. Phys. 133 (2002), 1463-1474.doi: 10.1023/A:1021186408422.

    [20]

    K. E. Dika and L. Molinet, Stability of multipeakons, Ann. I. H. Poincaré-AN., 26 (2009), 1517-1532.doi: 10.1016/j.anihpc.2009.02.002.

    [21]

    Y. Duan and J.-G. LiuError Estimate of the Particle Method For The B-Equation, Submitted to SIAM J. Numer. Anal.

    [22]

    J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the Point Vortex Method for the 2-D Euler Equations, Comm. Pure Appl. Math., 43 (1990), 415-430.doi: 10.1002/cpa.3160430305.

    [23]

    H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J. Numer. Anal., 44 (2006), 1655-1680.doi: 10.1137/040611975.

    [24]

    D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380.doi: 10.1137/S1111111102410943.

    [25]

    D. D. Holm, J. T. Ratnanather, A. Trouvé and L. Younes, Soliton dynamics in computational anatomy, Neuroimage, 23 (2004), S170-S178.doi: 10.1016/j.neuroimage.2004.07.017.

    [26]

    D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, From finite to infinite dimensions. With solutions to selected exercises by David C. P. Ellis. Oxford Texts in Applied and Engineering Mathematics, 12. Oxford University Press, Oxford, 2009.

    [27]

    Z. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146.

    [28]

    J.-G. Liu and Z. Xin , Convergence of vortex methods for weak solutions to 2-D Euler equations with vortex sheets data, Comm. Pure Appl. Math., 48 (1995), 611-628.doi: 10.1002/cpa.3160480603.

    [29]

    H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inv. Problems, 19 (2003), 1241-1245.doi: 10.1088/0266-5611/19/6/001.

    [30]

    T. Matsuo and Y. Miyatake, Conservative finite difference schemes for Degasperis-Procesi equation, J. Comput. Appl. Math, 236 (2012), 3728-3740.doi: 10.1016/j.cam.2011.09.004.

    [31]

    G. D. Rocca, M. C. Lombrado, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl's equations, Appl. Numer. Math, 56 (2006), 1108-1122.doi: 10.1016/j.apnum.2005.09.009.

    [32]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water wave equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.

    [33]

    Y. Xu and C.-W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998-2021.doi: 10.1137/070679764.

    [34]

    W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-1015-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return