May  2014, 34(5): 2013-2036. doi: 10.3934/dcds.2014.34.2013

Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps

1. 

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore, Singapore

Received  September 2012 Revised  August 2013 Published  October 2013

We consider skew-products of quadratic maps over certain Misiurewicz-Thurston maps and study their statistical properties. We prove that, when the coupling function is a polynomial of odd degree, such a system admits two positive Lyapunov exponents almost everywhere and a unique absolutely continuous invariant probability measure.
Citation: Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013
References:
[1]

J. F. Alves, A survey of recent results on some statistical features of non-uniformly expanding maps,, Discrete Contin. Dyn. Syst., 15 (2006), 1. doi: 10.3934/dcds.2006.15.1. Google Scholar

[2]

J. F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion,, Ann. Sci. École Norm. Sup. (4), 33 (2000), 1. doi: 10.1016/S0012-9593(00)00101-4. Google Scholar

[3]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351. doi: 10.1007/s002220000057. Google Scholar

[4]

J. F. Alves and D. Schnellmann, Ergodic properties of Viana-like maps with singularities in the base dynamics,, Proc. Amer. Math. Soc., 141 (2013), 3943. doi: 10.1090/S0002-9939-2013-11680-1. Google Scholar

[5]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion,, Ergodic Theory Dynam. Systems, 22 (2002), 1. doi: 10.1017/S0143385702000019. Google Scholar

[6]

J. Buzzi, O. Sester and M. Tsujii, Weakly expanding skew-product of quadratic maps,, Ergodic Theory Dynam. Systems, 23 (2003), 1401. doi: 10.1017/S0143385702001694. Google Scholar

[7]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Universitext: Tracts in Mathematics. Springer-Verlag, (1993). Google Scholar

[8]

W. Huang and W. Shen, Analytic skew products of quadratic polynomials over circle expanding maps,, Nonlinearity, 26 (2013), 389. doi: 10.1088/0951-7715/26/2/389. Google Scholar

[9]

J. Milnor, Dynamics in One Complex Variable,, Third Edition, (2006). Google Scholar

[10]

T. Nowicki, Symmetric $S$-unimodal mappings and positive Liapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 611. doi: 10.1017/S0143385700003199. Google Scholar

[11]

D. Schnellmann, Non-continuous weakly expanding skew-products of quadratic maps with two positive Lyapunov exponents,, Ergodic Theory Dynam. Systems, 28 (2008), 245. doi: 10.1017/S0143385707000429. Google Scholar

[12]

D. Schnellmann, Positive Lyapunov exponents for quadratic skew-products over a Misiurewicz-Thurston map,, Nonlinearity, 22 (2009), 2681. doi: 10.1088/0951-7715/22/11/006. Google Scholar

[13]

M. Viana, Multidimensional nonhyperbolic attractors,, Inst. Hautes Études Sci. Publ. Math., 85 (1997), 63. doi: 10.1007/BF02699535. Google Scholar

show all references

References:
[1]

J. F. Alves, A survey of recent results on some statistical features of non-uniformly expanding maps,, Discrete Contin. Dyn. Syst., 15 (2006), 1. doi: 10.3934/dcds.2006.15.1. Google Scholar

[2]

J. F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion,, Ann. Sci. École Norm. Sup. (4), 33 (2000), 1. doi: 10.1016/S0012-9593(00)00101-4. Google Scholar

[3]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351. doi: 10.1007/s002220000057. Google Scholar

[4]

J. F. Alves and D. Schnellmann, Ergodic properties of Viana-like maps with singularities in the base dynamics,, Proc. Amer. Math. Soc., 141 (2013), 3943. doi: 10.1090/S0002-9939-2013-11680-1. Google Scholar

[5]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion,, Ergodic Theory Dynam. Systems, 22 (2002), 1. doi: 10.1017/S0143385702000019. Google Scholar

[6]

J. Buzzi, O. Sester and M. Tsujii, Weakly expanding skew-product of quadratic maps,, Ergodic Theory Dynam. Systems, 23 (2003), 1401. doi: 10.1017/S0143385702001694. Google Scholar

[7]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Universitext: Tracts in Mathematics. Springer-Verlag, (1993). Google Scholar

[8]

W. Huang and W. Shen, Analytic skew products of quadratic polynomials over circle expanding maps,, Nonlinearity, 26 (2013), 389. doi: 10.1088/0951-7715/26/2/389. Google Scholar

[9]

J. Milnor, Dynamics in One Complex Variable,, Third Edition, (2006). Google Scholar

[10]

T. Nowicki, Symmetric $S$-unimodal mappings and positive Liapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 611. doi: 10.1017/S0143385700003199. Google Scholar

[11]

D. Schnellmann, Non-continuous weakly expanding skew-products of quadratic maps with two positive Lyapunov exponents,, Ergodic Theory Dynam. Systems, 28 (2008), 245. doi: 10.1017/S0143385707000429. Google Scholar

[12]

D. Schnellmann, Positive Lyapunov exponents for quadratic skew-products over a Misiurewicz-Thurston map,, Nonlinearity, 22 (2009), 2681. doi: 10.1088/0951-7715/22/11/006. Google Scholar

[13]

M. Viana, Multidimensional nonhyperbolic attractors,, Inst. Hautes Études Sci. Publ. Math., 85 (1997), 63. doi: 10.1007/BF02699535. Google Scholar

[1]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[2]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[3]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[4]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[5]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[6]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[7]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[8]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[9]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[10]

Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems & Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045

[11]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[12]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[13]

Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451

[14]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[15]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[16]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[17]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[18]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[19]

Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315

[20]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]