May  2014, 34(5): 2061-2068. doi: 10.3934/dcds.2014.34.2061

The Fourier restriction norm method for the Zakharov-Kuznetsov equation

1. 

Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, Universitätsstraße 1, 40225 Düsseldorf, Germany

2. 

Universität Bielefeld, Fakultät für Mathematik, Postfach 10 01 31, 33501 Bielefeld, Germany

Received  February 2013 Revised  June 2013 Published  October 2013

The Cauchy problem for the Zakharov-Kuznetsov equation is shown to be locally well-posed in $H^s(\mathbb{R}^2)$ for all $s>\frac{1}{2}$ by using the Fourier restriction norm method and bilinear refinements of Strichartz type inequalities.
Citation: Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061
References:
[1]

M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions, Comm. Partial Differential Equations, 28 (2003), 1943-1974. doi: 10.1081/PDE-120025491.

[2]

H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation, In Nonlinear equations: Methods, models and applications (Bergamo, 2001), 181-189, volume 54 of Progr. Nonlinear Differential Equations Appl., pages Birkhäuser, Basel, 2003.

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[4]

A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equations, 31 (1995), 1002-1012.

[5]

A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, 2008, 23 pp.

[6]

J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations, J. Nonlinear Sci., 3 (1993), 169-195. doi: 10.1007/BF02429863.

[7]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.

[8]

A. Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18 (2005), 1333-1339.

[9]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[10]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[11]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.

[12]

H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$, Int. Math. Res. Not., 26 (2003), 1449-1464. doi: 10.1155/S1073792803211260.

[13]

E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, 25 (1982), 985-989. doi: 10.1063/1.863853.

[14]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation. ArXiv e-prints, May 2012.

[15]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339. doi: 10.1137/080739173.

[16]

F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060-1085. doi: 10.1016/j.jfa.2010.11.005.

[17]

F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Comm. Partial Differential Equations, 35 (2010), 1674-1689. doi: 10.1080/03605302.2010.494195.

[18]

F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565. doi: 10.3934/dcds.2009.24.547.

[19]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal., 59 (2004), 425-438. doi: 10.1016/j.na.2004.07.022.

[20]

F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation, SIAM J. Math. Anal., 44 (2012), 2289-2304. doi: 10.1137/110850566.

[21]

F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 499-503. doi: 10.1016/j.crma.2012.05.007.

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031.

[23]

B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation, Phys. Scripta, 42 (1990), 641-642. doi: 10.1088/0031-8949/42/6/001.

[24]

V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.

show all references

References:
[1]

M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions, Comm. Partial Differential Equations, 28 (2003), 1943-1974. doi: 10.1081/PDE-120025491.

[2]

H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation, In Nonlinear equations: Methods, models and applications (Bergamo, 2001), 181-189, volume 54 of Progr. Nonlinear Differential Equations Appl., pages Birkhäuser, Basel, 2003.

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[4]

A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equations, 31 (1995), 1002-1012.

[5]

A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, 2008, 23 pp.

[6]

J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations, J. Nonlinear Sci., 3 (1993), 169-195. doi: 10.1007/BF02429863.

[7]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.

[8]

A. Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18 (2005), 1333-1339.

[9]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[10]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[11]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.

[12]

H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$, Int. Math. Res. Not., 26 (2003), 1449-1464. doi: 10.1155/S1073792803211260.

[13]

E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, 25 (1982), 985-989. doi: 10.1063/1.863853.

[14]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation. ArXiv e-prints, May 2012.

[15]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339. doi: 10.1137/080739173.

[16]

F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060-1085. doi: 10.1016/j.jfa.2010.11.005.

[17]

F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Comm. Partial Differential Equations, 35 (2010), 1674-1689. doi: 10.1080/03605302.2010.494195.

[18]

F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565. doi: 10.3934/dcds.2009.24.547.

[19]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal., 59 (2004), 425-438. doi: 10.1016/j.na.2004.07.022.

[20]

F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation, SIAM J. Math. Anal., 44 (2012), 2289-2304. doi: 10.1137/110850566.

[21]

F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 499-503. doi: 10.1016/j.crma.2012.05.007.

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031.

[23]

B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation, Phys. Scripta, 42 (1990), 641-642. doi: 10.1088/0031-8949/42/6/001.

[24]

V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.

[1]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[2]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[3]

Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074

[4]

Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145

[5]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[6]

Mo Chen, Lionel Rosier. Exact controllability of the linear Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3889-3916. doi: 10.3934/dcdsb.2020080

[7]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[8]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[9]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[10]

Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547

[11]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[12]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[13]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[16]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[17]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[18]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[19]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[20]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (353)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]