• Previous Article
    A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion
  • DCDS Home
  • This Issue
  • Next Article
    On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients
May  2014, 34(5): 2091-2104. doi: 10.3934/dcds.2014.34.2091

On Hamiltonian flows whose orbits are straight lines

1. 

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

2. 

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, United States

Received  February 2013 Revised  July 2013 Published  October 2013

We consider real analytic Hamiltonians on $\mathbb{R}^n \times \mathbb{R}^n$ whose flow depends linearly on time. Trivial examples are Hamiltonians $H(q,p)$ that do not depend on the coordinate $q\in \mathbb{R}^n$. By a theorem of Moser [11], every polynomial Hamiltonian of degree $3$ reduces to such a $q$-independent Hamiltonian via a linear symplectic change of variables. We show that such a reduction is impossible, in general, for polynomials of degree $4$ or higher. But we give a condition that implies linear-symplectic conjugacy to another simple class of Hamiltonians. The condition is shown to hold for all nondegenerate Hamiltonians that are homogeneous of degree $4$.
Citation: Hans Koch, Héctor E. Lomelí. On Hamiltonian flows whose orbits are straight lines. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2091-2104. doi: 10.3934/dcds.2014.34.2091
References:
[1]

A. Dragt and D. Abell, Jolt factorization of symplectic maps,, Int. J. Mod. Phys. A (Proc. Suppl.) B, 2 (1993), 1019. Google Scholar

[2]

M. de Bondt, Quasi-translations and counterexamples to the homogeneous dependence problem,, Proc. Amer. Math. Soc., 134 (2006), 2849. doi: 10.1090/S0002-9939-06-08335-3. Google Scholar

[3]

M. d. Bondt and A. v. d. Essen, Singular Hessians,, J. Algebra, 282 (2004), 195. doi: 10.1016/j.jalgebra.2004.08.026. Google Scholar

[4]

A. J. Dragt and J. M. Finn, Lie series and invariant functions for analytic symplectic maps,, J. Mathematical Phys., 17 (1976), 2215. doi: 10.1063/1.522868. Google Scholar

[5]

É. Forest, Geometric integration for particle accelerators,, J. Phys. A, 39 (2006), 5321. doi: 10.1088/0305-4470/39/19/S03. Google Scholar

[6]

K. F. and D. Wang, Variations on a theme by Euler,, J. Comput. Math., 16 (1998), 97. Google Scholar

[7]

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces,, Pure and Applied Mathematics, (1978). Google Scholar

[8]

H. W. E. Jung, Über ganze birationale Transformationen der Ebene,, J. Reine Angew. Math., 184 (1942), 161. Google Scholar

[9]

H. E. Lomelí, Symplectic homogeneous diffeomorphisms, Cremona maps and the jolt representation,, Nonlinearity, 18 (2005), 1065. doi: 10.1088/0951-7715/18/3/008. Google Scholar

[10]

R. I. McLachlan, H. Z. Munthe-Kaas, G. R. W. Quispel and A. Zanna, Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields,, Found. Comput. Math., 8 (2008), 335. doi: 10.1007/s10208-007-9009-6. Google Scholar

[11]

J. Moser, On quadratic symplectic mappings,, Mathematische Zeitschrift, 216 (1994), 417. doi: 10.1007/BF02572331. Google Scholar

show all references

References:
[1]

A. Dragt and D. Abell, Jolt factorization of symplectic maps,, Int. J. Mod. Phys. A (Proc. Suppl.) B, 2 (1993), 1019. Google Scholar

[2]

M. de Bondt, Quasi-translations and counterexamples to the homogeneous dependence problem,, Proc. Amer. Math. Soc., 134 (2006), 2849. doi: 10.1090/S0002-9939-06-08335-3. Google Scholar

[3]

M. d. Bondt and A. v. d. Essen, Singular Hessians,, J. Algebra, 282 (2004), 195. doi: 10.1016/j.jalgebra.2004.08.026. Google Scholar

[4]

A. J. Dragt and J. M. Finn, Lie series and invariant functions for analytic symplectic maps,, J. Mathematical Phys., 17 (1976), 2215. doi: 10.1063/1.522868. Google Scholar

[5]

É. Forest, Geometric integration for particle accelerators,, J. Phys. A, 39 (2006), 5321. doi: 10.1088/0305-4470/39/19/S03. Google Scholar

[6]

K. F. and D. Wang, Variations on a theme by Euler,, J. Comput. Math., 16 (1998), 97. Google Scholar

[7]

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces,, Pure and Applied Mathematics, (1978). Google Scholar

[8]

H. W. E. Jung, Über ganze birationale Transformationen der Ebene,, J. Reine Angew. Math., 184 (1942), 161. Google Scholar

[9]

H. E. Lomelí, Symplectic homogeneous diffeomorphisms, Cremona maps and the jolt representation,, Nonlinearity, 18 (2005), 1065. doi: 10.1088/0951-7715/18/3/008. Google Scholar

[10]

R. I. McLachlan, H. Z. Munthe-Kaas, G. R. W. Quispel and A. Zanna, Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields,, Found. Comput. Math., 8 (2008), 335. doi: 10.1007/s10208-007-9009-6. Google Scholar

[11]

J. Moser, On quadratic symplectic mappings,, Mathematische Zeitschrift, 216 (1994), 417. doi: 10.1007/BF02572331. Google Scholar

[1]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[2]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[3]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[4]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[5]

Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339

[6]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[7]

Victor Kozyakin. Polynomial reformulation of the Kuo criteria for v- sufficiency of map-germs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 587-602. doi: 10.3934/dcdsb.2010.14.587

[8]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[9]

Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253

[10]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[11]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[12]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[13]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[14]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[15]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[16]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[17]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[18]

John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723

[19]

Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927

[20]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]