    May  2014, 34(5): 2105-2133. doi: 10.3934/dcds.2014.34.2105

## On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients

 1 Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, E-48160 Derio, Basque Country, Spain

Received  March 2013 Revised  August 2013 Published  October 2013

We study an optimal boundary control problem (OCP) associated to a linear elliptic equation $-\mathrm{div}\,\left(\nabla y+A(x)\nabla y\right)=f$. The characteristic feature of this equation is the fact that the matrix $A(x)=[a_{ij}(x)]_{i,j=1,\dots,N}$ is skew-symmetric, $a_{ij}(x)=-a_{ji}(x)$, measurable, and belongs to $L^2$-space (rather than $L^\infty$). In spite of the fact that the equations of this type can exhibit non-uniqueness of weak solutions--- namely, they have approximable solutions as well as another type of weak solutions that can not be obtained through an approximation of matrix $A$, the corresponding OCP is well-possed and admits a unique solution. At the same time, an optimal solution to such problem can inherit a singular character of the original matrix $A$. We indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that each of that optimal solutions can be attainable by solutions of special optimal boundary control problems.
Citation: Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105
##### References:
  R. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar  G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83.  doi: 10.1007/s13163-010-0030-y.  Google Scholar  D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999). Google Scholar  D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45. Google Scholar  M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization,, Second edition. Advances in Design and Control, (2011). Google Scholar  L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics. CRC Press, (1992). Google Scholar  M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279.  doi: 10.1007/BF01192211.  Google Scholar  A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, (1999). Google Scholar  D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar  P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications. Birkhäuser, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar  P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205.  doi: 10.1007/s10957-011-9840-4.  Google Scholar  P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31.  doi: 10.4171/ZAA/1447.  Google Scholar  J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar  J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, (1973). Google Scholar  T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773.  doi: 10.1016/j.crma.2009.05.008.  Google Scholar  J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385. Google Scholar  J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar  V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27.  doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar  V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156.  doi: 10.1007/BF02465783.  Google Scholar  V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

show all references

##### References:
  R. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar  G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83.  doi: 10.1007/s13163-010-0030-y.  Google Scholar  D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999). Google Scholar  D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45. Google Scholar  M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization,, Second edition. Advances in Design and Control, (2011). Google Scholar  L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics. CRC Press, (1992). Google Scholar  M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279.  doi: 10.1007/BF01192211.  Google Scholar  A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, (1999). Google Scholar  D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar  P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications. Birkhäuser, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar  P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205.  doi: 10.1007/s10957-011-9840-4.  Google Scholar  P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31.  doi: 10.4171/ZAA/1447.  Google Scholar  J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar  J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, (1973). Google Scholar  T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773.  doi: 10.1016/j.crma.2009.05.008.  Google Scholar  J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385. Google Scholar  J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar  V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27.  doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar  V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156.  doi: 10.1007/BF02465783.  Google Scholar  V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar
  Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967  Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164  Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003  Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172  Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064  Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619  Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193  Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331  Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101  Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451  N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059  Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025  Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347  Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843  Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835  Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016  Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827  Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307  Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625  Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

2018 Impact Factor: 1.143