# American Institute of Mathematical Sciences

May  2014, 34(5): 2105-2133. doi: 10.3934/dcds.2014.34.2105

## On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients

 1 Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, E-48160 Derio, Basque Country, Spain

Received  March 2013 Revised  August 2013 Published  October 2013

We study an optimal boundary control problem (OCP) associated to a linear elliptic equation $-\mathrm{div}\,\left(\nabla y+A(x)\nabla y\right)=f$. The characteristic feature of this equation is the fact that the matrix $A(x)=[a_{ij}(x)]_{i,j=1,\dots,N}$ is skew-symmetric, $a_{ij}(x)=-a_{ji}(x)$, measurable, and belongs to $L^2$-space (rather than $L^\infty$). In spite of the fact that the equations of this type can exhibit non-uniqueness of weak solutions--- namely, they have approximable solutions as well as another type of weak solutions that can not be obtained through an approximation of matrix $A$, the corresponding OCP is well-possed and admits a unique solution. At the same time, an optimal solution to such problem can inherit a singular character of the original matrix $A$. We indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that each of that optimal solutions can be attainable by solutions of special optimal boundary control problems.
Citation: Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105
##### References:
 [1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.  Google Scholar [2] G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Revista Matematica Complutense, 24 (2011), 83-94. doi: 10.1007/s13163-010-0030-y.  Google Scholar [3] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999.  Google Scholar [4] D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl., 31 (1997),45-93.  Google Scholar [5] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, Second edition. Advances in Design and Control, 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.  Google Scholar [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.  Google Scholar [7] M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence, Probab. Theory and Related Fields, 105 (1996), 279-334. doi: 10.1007/BF01192211.  Google Scholar [8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000.  Google Scholar [9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.  Google Scholar [10] P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis, Systems & Control: Foundations & Applications. Birkhäuser, Boston, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar [11] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions, Journal of Optimization Theory and Applications, 150 (2011), 205-232. doi: 10.1007/s10957-011-9840-4.  Google Scholar [12] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53. doi: 10.4171/ZAA/1447.  Google Scholar [13] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.  Google Scholar [14] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 183. Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar [15] T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778. doi: 10.1016/j.crma.2009.05.008.  Google Scholar [16] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387.  Google Scholar [17] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. of Functional Analysis, 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.  Google Scholar [18] V. V. Zhikov, Weighted Sobolev spaces, Sbornik: Mathematics, 189 (1998), 27-58; translation in Sb. Math., 189 (1998), 1139-1170. doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar [19] V. V. Zhikov, Diffusion in incompressible random flow, Functional Analysis and Its Applications, 31 (1997), 156-166. doi: 10.1007/BF02465783.  Google Scholar [20] V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183. doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

show all references

##### References:
 [1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.  Google Scholar [2] G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Revista Matematica Complutense, 24 (2011), 83-94. doi: 10.1007/s13163-010-0030-y.  Google Scholar [3] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999.  Google Scholar [4] D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl., 31 (1997),45-93.  Google Scholar [5] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, Second edition. Advances in Design and Control, 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.  Google Scholar [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.  Google Scholar [7] M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence, Probab. Theory and Related Fields, 105 (1996), 279-334. doi: 10.1007/BF01192211.  Google Scholar [8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000.  Google Scholar [9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.  Google Scholar [10] P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis, Systems & Control: Foundations & Applications. Birkhäuser, Boston, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar [11] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions, Journal of Optimization Theory and Applications, 150 (2011), 205-232. doi: 10.1007/s10957-011-9840-4.  Google Scholar [12] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53. doi: 10.4171/ZAA/1447.  Google Scholar [13] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.  Google Scholar [14] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 183. Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar [15] T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778. doi: 10.1016/j.crma.2009.05.008.  Google Scholar [16] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387.  Google Scholar [17] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. of Functional Analysis, 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.  Google Scholar [18] V. V. Zhikov, Weighted Sobolev spaces, Sbornik: Mathematics, 189 (1998), 27-58; translation in Sb. Math., 189 (1998), 1139-1170. doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar [19] V. V. Zhikov, Diffusion in incompressible random flow, Functional Analysis and Its Applications, 31 (1997), 156-166. doi: 10.1007/BF02465783.  Google Scholar [20] V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183. doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar
 [1] Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 [2] Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 [3] Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003 [4] Laurent Pfeiffer. Optimality conditions in variational form for non-linear constrained stochastic control problems. Mathematical Control & Related Fields, 2020, 10 (3) : 493-526. doi: 10.3934/mcrf.2020008 [5] Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172 [6] Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 [7] Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 [8] Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193 [9] Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 [10] Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101 [11] Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451 [12] Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021, 11 (3) : 479-498. doi: 10.3934/mcrf.2021009 [13] Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021048 [14] N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059 [15] Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347 [16] Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 [17] Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843 [18] Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 [19] Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 [20] Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

2020 Impact Factor: 1.392