May  2014, 34(5): 2243-2259. doi: 10.3934/dcds.2014.34.2243

Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$

1. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005

2. 

School of Mathematical Sciences, Xiamen University, Fujian 361005, China, China

Received  March 2013 Revised  July 2013 Published  October 2013

We consider the compressible barotropic Navier-Stokes-Korteweg system with friction in this paper. The global solutions and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small enough. In particular, the decay rates of the higher-order spatial derivatives of the solution are obtained. Our proof is based on a family of scaled energy estimates and interpolations among them without linear decay analysis.
Citation: Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243
References:
[1]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water system, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[2]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., 28 (1998), 258-267.

[3]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincar Anal. Non Linaire, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[4]

K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains, Comm. Partial Differential Equations, 18 (1993), 1445-1476. doi: 10.1080/03605309308820981.

[5]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233. doi: 10.1016/j.jde.2007.03.008.

[6]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907.

[7]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758. doi: 10.1142/S021820250700208X.

[8]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X.

[10]

B. Haspot, Existence of Global Strong Solution for the Compressible Navier-Stokes System and the Korteweg System in Two-Dimension, preprint, arXiv:1211.4819.

[11]

D. Hoff and K. Zumbrun, Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676. doi: 10.1512/iumj.1995.44.2003.

[12]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.

[13]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[14]

D. J. Korteweg, Sur La Forme Que Prennent Les Équations Du Mouvement Des Fluides Si Lón Tient Compte Des Forces Capillaires Causées Par Des Variations De Densité Considérables Mais Continues Et Sur La Théorie De La Capillarité Dans Lhypothse Dúne Variation Continue De La Densité, Archives Néerlandaises de Sciences Exactes et Naturelles, (1901), 1-24.

[15]

Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 165 (2002), 89-159. doi: 10.1007/s00205-002-0221-x.

[16]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330. doi: 10.1007/s00205-005-0365-6.

[17]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincar-Anal. Non Lin-aire, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[18]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[19]

A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids in "MRC Technical Summary Report", University of Wisconsin-Madison, 1981, 1-16.

[20]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

[21]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337-342. doi: 10.3792/pjaa.55.337.

[22]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

[23]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 339-418. doi: 10.1016/0362-546X(85)90001-X.

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N. J. 1970 xiv+290 pp.

[25]

Z. Tan, H. Q. Wang and J. K. Xu, Global existence and optimal $L^2$ decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181-187. doi: 10.1016/j.jmaa.2012.01.028.

[26]

S. Ukai, T. Yang and H. J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574. doi: 10.1142/S0219891606000902.

[27]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271. doi: 10.1016/j.jmaa.2011.01.006.

[28]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential equations, 253 (2012), 273-297. doi: 10.1016/j.jde.2012.03.006.

show all references

References:
[1]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water system, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[2]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., 28 (1998), 258-267.

[3]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincar Anal. Non Linaire, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[4]

K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains, Comm. Partial Differential Equations, 18 (1993), 1445-1476. doi: 10.1080/03605309308820981.

[5]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233. doi: 10.1016/j.jde.2007.03.008.

[6]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907.

[7]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758. doi: 10.1142/S021820250700208X.

[8]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X.

[10]

B. Haspot, Existence of Global Strong Solution for the Compressible Navier-Stokes System and the Korteweg System in Two-Dimension, preprint, arXiv:1211.4819.

[11]

D. Hoff and K. Zumbrun, Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676. doi: 10.1512/iumj.1995.44.2003.

[12]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.

[13]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[14]

D. J. Korteweg, Sur La Forme Que Prennent Les Équations Du Mouvement Des Fluides Si Lón Tient Compte Des Forces Capillaires Causées Par Des Variations De Densité Considérables Mais Continues Et Sur La Théorie De La Capillarité Dans Lhypothse Dúne Variation Continue De La Densité, Archives Néerlandaises de Sciences Exactes et Naturelles, (1901), 1-24.

[15]

Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 165 (2002), 89-159. doi: 10.1007/s00205-002-0221-x.

[16]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330. doi: 10.1007/s00205-005-0365-6.

[17]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincar-Anal. Non Lin-aire, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[18]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[19]

A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids in "MRC Technical Summary Report", University of Wisconsin-Madison, 1981, 1-16.

[20]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

[21]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337-342. doi: 10.3792/pjaa.55.337.

[22]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

[23]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 339-418. doi: 10.1016/0362-546X(85)90001-X.

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N. J. 1970 xiv+290 pp.

[25]

Z. Tan, H. Q. Wang and J. K. Xu, Global existence and optimal $L^2$ decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181-187. doi: 10.1016/j.jmaa.2012.01.028.

[26]

S. Ukai, T. Yang and H. J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574. doi: 10.1142/S0219891606000902.

[27]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271. doi: 10.1016/j.jmaa.2011.01.006.

[28]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential equations, 253 (2012), 273-297. doi: 10.1016/j.jde.2012.03.006.

[1]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[2]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[3]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067

[4]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[5]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[6]

Matteo Bonforte, Jean Dolbeault, Bruno Nazaret, Nikita Simonov. Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022093

[7]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[9]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797

[12]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[13]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[14]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[15]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[16]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[17]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[18]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[19]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[20]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (122)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]