\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$

Abstract / Introduction Related Papers Cited by
  • We consider the compressible barotropic Navier-Stokes-Korteweg system with friction in this paper. The global solutions and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small enough. In particular, the decay rates of the higher-order spatial derivatives of the solution are obtained. Our proof is based on a family of scaled energy estimates and interpolations among them without linear decay analysis.
    Mathematics Subject Classification: Primary: 35Q30, 76N10; Secondary: 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water system, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: 10.1081/PDE-120020499.

    [2]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., 28 (1998), 258-267.

    [3]

    R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincar Anal. Non Linaire, 18 (2001), 97-133.doi: 10.1016/S0294-1449(00)00056-1.

    [4]

    K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains, Comm. Partial Differential Equations, 18 (1993), 1445-1476.doi: 10.1080/03605309308820981.

    [5]

    R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.doi: 10.1016/j.jde.2007.03.008.

    [6]

    J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.doi: 10.1007/BF00250907.

    [7]

    R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758.doi: 10.1142/S021820250700208X.

    [8]

    B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.doi: 10.1007/s00021-009-0013-2.

    [9]

    H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.doi: 10.1137/S003614109223413X.

    [10]

    B. HaspotExistence of Global Strong Solution for the Compressible Navier-Stokes System and the Korteweg System in Two-Dimension, preprint, arXiv:1211.4819.

    [11]

    D. Hoff and K. Zumbrun, Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.doi: 10.1512/iumj.1995.44.2003.

    [12]

    D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.

    [13]

    H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97.doi: 10.1006/jmaa.1996.0069.

    [14]

    D. J. Korteweg, Sur La Forme Que Prennent Les Équations Du Mouvement Des Fluides Si Lón Tient Compte Des Forces Capillaires Causées Par Des Variations De Densité Considérables Mais Continues Et Sur La Théorie De La Capillarité Dans Lhypothse Dúne Variation Continue De La Densité, Archives Néerlandaises de Sciences Exactes et Naturelles, (1901), 1-24.

    [15]

    Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbbR^3$, Arch. Ration. Mech. Anal., 165 (2002), 89-159.doi: 10.1007/s00205-002-0221-x.

    [16]

    Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.doi: 10.1007/s00205-005-0365-6.

    [17]

    M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincar-Anal. Non Lin-aire, 25 (2008), 679-696.doi: 10.1016/j.anihpc.2007.03.005.

    [18]

    Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232.doi: 10.1016/j.jmaa.2011.11.006.

    [19]

    A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids in "MRC Technical Summary Report", University of Wisconsin-Madison, 1981, 1-16.

    [20]

    A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

    [21]

    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337-342.doi: 10.3792/pjaa.55.337.

    [22]

    L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

    [23]

    G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 339-418.doi: 10.1016/0362-546X(85)90001-X.

    [24]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N. J. 1970 xiv+290 pp.

    [25]

    Z. Tan, H. Q. Wang and J. K. Xu, Global existence and optimal $L^2$ decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181-187.doi: 10.1016/j.jmaa.2012.01.028.

    [26]

    S. Ukai, T. Yang and H. J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.doi: 10.1142/S0219891606000902.

    [27]

    Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.doi: 10.1016/j.jmaa.2011.01.006.

    [28]

    Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential equations, 253 (2012), 273-297.doi: 10.1016/j.jde.2012.03.006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return