May  2014, 34(5): 2261-2281. doi: 10.3934/dcds.2014.34.2261

Scattering theory for the wave equation of a Hartree type in three space dimensions

1. 

Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

Received  December 2012 Revised  August 2013 Published  October 2013

The paper concerns a scattering problem of the wave equation of a Hartree type with small initial data with fast decay. The equation is \[ \partial_t^2 u - \Delta u = V_1(x)u+ (V_2\ast |u|^{p-1})u , \qquad t\in {\bf R}, \; x \in {\bf R}^3, \] where $p\ge 3, \; V_1(x)=O(|x|^{-\gamma_1})$ with $\gamma_1>0$ as $|x|\to\infty, \; V_2(x) = \pm |x|^{-\gamma_2}$ with $\gamma_2>0$. We prove the existence of scattering operators under almost optimal conditions on the potentials and initial data in terms of decay, using pointwise estimates. Our result generalizes the one by [14, 15] for the case $p=3$.
Citation: Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261
References:
[1]

F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions,, Comm. Partial Differential Equations, 11 (1986), 1459.  doi: 10.1080/03605308608820470.  Google Scholar

[2]

K. Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution,, Funkcialaj Ekvacioj, 43 (2000), 559.   Google Scholar

[3]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[4]

P. Karageorgis and K. Tsutaya, On the asymptotic behavior of nonlinear waves in the presence of a short-range potential,, Manuscripta Math., 119 (2006), 323.  doi: 10.1007/s00229-005-0620-z.  Google Scholar

[5]

P. Karageorgis and K. Tsutaya, On the Asymptotic Behavior of Solutions of the Wave Equation of Hartree Type,, in preparation., ().   Google Scholar

[6]

P. Karageorgis and K. Tsutaya, Existence and Blow Up for A Hartree-Type Wave Equation,, in preparation., ().   Google Scholar

[7]

H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications,, Dispersive nonlinear problems in mathematical physics, (2004), 123.   Google Scholar

[8]

G. Perla Menzala and W. A. Strauss, On a wave equation with a cubic convolution,, J. Diff. Eq., 43 (1982), 93.  doi: 10.1016/0022-0396(82)90076-6.  Google Scholar

[9]

K. Mochizuki and T. Motai, On Small Data Scattering for Some Nonlinear Wave Equations,, Patterns and waves, (1986), 543.  doi: 10.1016/S0168-2024(08)70145-0.  Google Scholar

[10]

K. Mochizuki, On small data scattering with cubic convolution nonlinearity,, J. Math. Soc. Japan, 41 (1989), 143.  doi: 10.2969/jmsj/04110143.  Google Scholar

[11]

H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions,, Math. Z., 198 (1988), 277.  doi: 10.1007/BF01163296.  Google Scholar

[12]

W. A. Strauss, Nonlinear invariant wave equations,, Lecture Notes in Phys., 73 (1978), 197.   Google Scholar

[13]

W. A. Strauss and K. Tsutaya, Existence and blow up of small amplitude nonlinear waves with a negative potential,, Discrete Continuous Dynam. Systems, 3 (1997), 175.  doi: 10.3934/dcds.1997.3.175.  Google Scholar

[14]

K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution,, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, (2003), 913.   Google Scholar

[15]

K. Tsutaya, Scattering theory for a wave equation of Hartree type,, Differential & Difference Equations And Applications, (2006), 1061.   Google Scholar

[16]

K. Tsutaya, Weighted estimates for a convolution appearing in the wave equation of Hartree type,, to appear in J. Math. Anal. Appl.., ().   Google Scholar

show all references

References:
[1]

F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions,, Comm. Partial Differential Equations, 11 (1986), 1459.  doi: 10.1080/03605308608820470.  Google Scholar

[2]

K. Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution,, Funkcialaj Ekvacioj, 43 (2000), 559.   Google Scholar

[3]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[4]

P. Karageorgis and K. Tsutaya, On the asymptotic behavior of nonlinear waves in the presence of a short-range potential,, Manuscripta Math., 119 (2006), 323.  doi: 10.1007/s00229-005-0620-z.  Google Scholar

[5]

P. Karageorgis and K. Tsutaya, On the Asymptotic Behavior of Solutions of the Wave Equation of Hartree Type,, in preparation., ().   Google Scholar

[6]

P. Karageorgis and K. Tsutaya, Existence and Blow Up for A Hartree-Type Wave Equation,, in preparation., ().   Google Scholar

[7]

H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications,, Dispersive nonlinear problems in mathematical physics, (2004), 123.   Google Scholar

[8]

G. Perla Menzala and W. A. Strauss, On a wave equation with a cubic convolution,, J. Diff. Eq., 43 (1982), 93.  doi: 10.1016/0022-0396(82)90076-6.  Google Scholar

[9]

K. Mochizuki and T. Motai, On Small Data Scattering for Some Nonlinear Wave Equations,, Patterns and waves, (1986), 543.  doi: 10.1016/S0168-2024(08)70145-0.  Google Scholar

[10]

K. Mochizuki, On small data scattering with cubic convolution nonlinearity,, J. Math. Soc. Japan, 41 (1989), 143.  doi: 10.2969/jmsj/04110143.  Google Scholar

[11]

H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions,, Math. Z., 198 (1988), 277.  doi: 10.1007/BF01163296.  Google Scholar

[12]

W. A. Strauss, Nonlinear invariant wave equations,, Lecture Notes in Phys., 73 (1978), 197.   Google Scholar

[13]

W. A. Strauss and K. Tsutaya, Existence and blow up of small amplitude nonlinear waves with a negative potential,, Discrete Continuous Dynam. Systems, 3 (1997), 175.  doi: 10.3934/dcds.1997.3.175.  Google Scholar

[14]

K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution,, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, (2003), 913.   Google Scholar

[15]

K. Tsutaya, Scattering theory for a wave equation of Hartree type,, Differential & Difference Equations And Applications, (2006), 1061.   Google Scholar

[16]

K. Tsutaya, Weighted estimates for a convolution appearing in the wave equation of Hartree type,, to appear in J. Math. Anal. Appl.., ().   Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]