May  2014, 34(5): 2283-2305. doi: 10.3934/dcds.2014.34.2283

Weighted Green functions of polynomial skew products on $\mathbb{C}^2$

1. 

Toba National College of Maritime Technology, Mie 517-8501

Received  December 2012 Revised  August 2013 Published  October 2013

We study the dynamics of polynomial skew products on $\mathbb{C}^2$. By using suitable weights, we prove the existence of several types of Green functions. Largely, continuity and plurisubharmonicity follow. Moreover, it relates to the dynamics of the rational extensions to weighted projective spaces.
Citation: Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283
References:
[1]

E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of $\mathbbC^k$,, Amer. J. Math., 122 (2000), 153.  doi: 10.1353/ajm.2000.0001.  Google Scholar

[2]

S. Boucksom, C. Favre and M. Jonsson, Degree growth of meromorphic surface maps,, Duke Math. J., 141 (2008), 519.  doi: 10.1215/00127094-2007-004.  Google Scholar

[3]

L. DeMarco and S. L. Hruska, Axiom A polynomial skew products of $\mathbbC^2$ and their postcritical sets,, Ergodic Theory Dynam. Systems, 28 (2008), 1749.  doi: 10.1017/S0143385708000047.  Google Scholar

[4]

J. Diller and V. Guedj, Regularity of dynamical Green's functions,, Trans. Amer. Math. Soc., 361 (2009), 4783.  doi: 10.1090/S0002-9947-09-04740-0.  Google Scholar

[5]

C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs,, (French) [Dynamics of rational mappings of multiprojective spaces], 50 (2001), 881.  doi: 10.1512/iumj.2001.50.1880.  Google Scholar

[6]

C. Favre and M. Jonsson, The Valuative Tree,, Lecture Notes in Mathematics, (1853).  doi: 10.1007/b100262.  Google Scholar

[7]

C. Favre and M. Jonsson, Eigenvaluations,, Ann. Sci. École Norm. Sup. (4), 40 (2007), 309.  doi: 10.1016/j.ansens.2007.01.002.  Google Scholar

[8]

C. Favre and M. Jonsson, Dynamical compactifications of $\mathbbC^2$,, Ann. of Math. (2), 173 (2011), 211.  doi: 10.4007/annals.2011.173.1.6.  Google Scholar

[9]

J. E. Fornæss and N. Sibony, Complex Dynamics in Higher Dimension. II,, Modern methods in complex analysis (Princeton, (1992), 135.   Google Scholar

[10]

V. Guedj, Dynamics of polynomial mappings of $\mathbbC^2$,, Amer. J. Math., 124 (2002), 75.  doi: 10.1353/ajm.2002.0002.  Google Scholar

[11]

S.-M. Heinemann, Julia sets for holomorphic endomorphisms of $\mathbbC^n$,, Ergodic Theory Dynam. Systems, 16 (1996), 1275.  doi: 10.1017/S0143385700010026.  Google Scholar

[12]

S.-M. Heinemann, Julia sets of skew products in $\mathbbC^2$,, Kyushu J. Math., 52 (1998), 299.  doi: 10.2206/kyushujm.52.299.  Google Scholar

[13]

S. L. Hruska and R. K. W. Roeder, Topology of Fatou components for endomorphisms of $\mathbb{CP}^k$: linking with the Green's current,, Fund. Math., 210 (2010), 73.  doi: 10.4064/fm210-1-4.  Google Scholar

[14]

M. Jonsson, Dynamics of polynomial skew products on $\mathbbC^2$,, Math. Ann., 314 (1999), 403.  doi: 10.1007/s002080050301.  Google Scholar

[15]

R. K. W. Roeder, A dichotomy for Fatou components of polynomial skew products,, Conform. Geom. Dyn., 15 (2011), 7.  doi: 10.1090/S1088-4173-2011-00223-2.  Google Scholar

[16]

K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on $\mathbbC^2$,, Michigan Math. J., 59 (2010), 153.  doi: 10.1307/mmj/1272376030.  Google Scholar

[17]

K. Ueno, Weighted Green functions of nondegenerate polynomial skew products on $\mathbbC^2$,, Discrete Contin. Dyn. Syst., 31 (2011), 985.  doi: 10.3934/dcds.2011.31.985.  Google Scholar

[18]

K. Ueno, Fiberwise Green functions of skew products semiconjugate to some polynomial products on $\mathbbC^2$,, Kodai Math. J., 35 (2012), 345.  doi: 10.2996/kmj/1341401055.  Google Scholar

[19]

K. Ueno, Polynomial skew products whose Julia sets have infinitely many symmetries,, submitted., ().   Google Scholar

show all references

References:
[1]

E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of $\mathbbC^k$,, Amer. J. Math., 122 (2000), 153.  doi: 10.1353/ajm.2000.0001.  Google Scholar

[2]

S. Boucksom, C. Favre and M. Jonsson, Degree growth of meromorphic surface maps,, Duke Math. J., 141 (2008), 519.  doi: 10.1215/00127094-2007-004.  Google Scholar

[3]

L. DeMarco and S. L. Hruska, Axiom A polynomial skew products of $\mathbbC^2$ and their postcritical sets,, Ergodic Theory Dynam. Systems, 28 (2008), 1749.  doi: 10.1017/S0143385708000047.  Google Scholar

[4]

J. Diller and V. Guedj, Regularity of dynamical Green's functions,, Trans. Amer. Math. Soc., 361 (2009), 4783.  doi: 10.1090/S0002-9947-09-04740-0.  Google Scholar

[5]

C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs,, (French) [Dynamics of rational mappings of multiprojective spaces], 50 (2001), 881.  doi: 10.1512/iumj.2001.50.1880.  Google Scholar

[6]

C. Favre and M. Jonsson, The Valuative Tree,, Lecture Notes in Mathematics, (1853).  doi: 10.1007/b100262.  Google Scholar

[7]

C. Favre and M. Jonsson, Eigenvaluations,, Ann. Sci. École Norm. Sup. (4), 40 (2007), 309.  doi: 10.1016/j.ansens.2007.01.002.  Google Scholar

[8]

C. Favre and M. Jonsson, Dynamical compactifications of $\mathbbC^2$,, Ann. of Math. (2), 173 (2011), 211.  doi: 10.4007/annals.2011.173.1.6.  Google Scholar

[9]

J. E. Fornæss and N. Sibony, Complex Dynamics in Higher Dimension. II,, Modern methods in complex analysis (Princeton, (1992), 135.   Google Scholar

[10]

V. Guedj, Dynamics of polynomial mappings of $\mathbbC^2$,, Amer. J. Math., 124 (2002), 75.  doi: 10.1353/ajm.2002.0002.  Google Scholar

[11]

S.-M. Heinemann, Julia sets for holomorphic endomorphisms of $\mathbbC^n$,, Ergodic Theory Dynam. Systems, 16 (1996), 1275.  doi: 10.1017/S0143385700010026.  Google Scholar

[12]

S.-M. Heinemann, Julia sets of skew products in $\mathbbC^2$,, Kyushu J. Math., 52 (1998), 299.  doi: 10.2206/kyushujm.52.299.  Google Scholar

[13]

S. L. Hruska and R. K. W. Roeder, Topology of Fatou components for endomorphisms of $\mathbb{CP}^k$: linking with the Green's current,, Fund. Math., 210 (2010), 73.  doi: 10.4064/fm210-1-4.  Google Scholar

[14]

M. Jonsson, Dynamics of polynomial skew products on $\mathbbC^2$,, Math. Ann., 314 (1999), 403.  doi: 10.1007/s002080050301.  Google Scholar

[15]

R. K. W. Roeder, A dichotomy for Fatou components of polynomial skew products,, Conform. Geom. Dyn., 15 (2011), 7.  doi: 10.1090/S1088-4173-2011-00223-2.  Google Scholar

[16]

K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on $\mathbbC^2$,, Michigan Math. J., 59 (2010), 153.  doi: 10.1307/mmj/1272376030.  Google Scholar

[17]

K. Ueno, Weighted Green functions of nondegenerate polynomial skew products on $\mathbbC^2$,, Discrete Contin. Dyn. Syst., 31 (2011), 985.  doi: 10.3934/dcds.2011.31.985.  Google Scholar

[18]

K. Ueno, Fiberwise Green functions of skew products semiconjugate to some polynomial products on $\mathbbC^2$,, Kodai Math. J., 35 (2012), 345.  doi: 10.2996/kmj/1341401055.  Google Scholar

[19]

K. Ueno, Polynomial skew products whose Julia sets have infinitely many symmetries,, submitted., ().   Google Scholar

[1]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-riemannian einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]