Citation: |
[1] |
E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of $\mathbbC^k$, Amer. J. Math., 122 (2000), 153-212.doi: 10.1353/ajm.2000.0001. |
[2] |
S. Boucksom, C. Favre and M. Jonsson, Degree growth of meromorphic surface maps, Duke Math. J., 141 (2008), 519-538.doi: 10.1215/00127094-2007-004. |
[3] |
L. DeMarco and S. L. Hruska, Axiom A polynomial skew products of $\mathbbC^2$ and their postcritical sets, Ergodic Theory Dynam. Systems, 28 (2008), 1749-1779.doi: 10.1017/S0143385708000047. |
[4] |
J. Diller and V. Guedj, Regularity of dynamical Green's functions, Trans. Amer. Math. Soc., 361 (2009), 4783-4805.doi: 10.1090/S0002-9947-09-04740-0. |
[5] |
C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, (French) [Dynamics of rational mappings of multiprojective spaces], Indiana Univ. Math. J., 50 (2001), 881-934.doi: 10.1512/iumj.2001.50.1880. |
[6] |
C. Favre and M. Jonsson, The Valuative Tree, Lecture Notes in Mathematics, 1853. Springer-Verlag, Berlin, 2004.doi: 10.1007/b100262. |
[7] |
C. Favre and M. Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup. (4), 40 (2007), 309-349.doi: 10.1016/j.ansens.2007.01.002. |
[8] |
C. Favre and M. Jonsson, Dynamical compactifications of $\mathbbC^2$, Ann. of Math. (2), 173 (2011), 211-249.doi: 10.4007/annals.2011.173.1.6. |
[9] |
J. E. Fornæss and N. Sibony, Complex Dynamics in Higher Dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992), 135-182, Ann. of Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995. |
[10] |
V. Guedj, Dynamics of polynomial mappings of $\mathbbC^2$, Amer. J. Math., 124 (2002), 75-106.doi: 10.1353/ajm.2002.0002. |
[11] |
S.-M. Heinemann, Julia sets for holomorphic endomorphisms of $\mathbbC^n$, Ergodic Theory Dynam. Systems, 16 (1996), 1275-1296.doi: 10.1017/S0143385700010026. |
[12] |
S.-M. Heinemann, Julia sets of skew products in $\mathbbC^2$, Kyushu J. Math., 52 (1998), 299-329.doi: 10.2206/kyushujm.52.299. |
[13] |
S. L. Hruska and R. K. W. Roeder, Topology of Fatou components for endomorphisms of $\mathbb{CP}^k$: linking with the Green's current, Fund. Math., 210 (2010), 73-98.doi: 10.4064/fm210-1-4. |
[14] |
M. Jonsson, Dynamics of polynomial skew products on $\mathbbC^2$, Math. Ann., 314 (1999), 403-447.doi: 10.1007/s002080050301. |
[15] |
R. K. W. Roeder, A dichotomy for Fatou components of polynomial skew products, Conform. Geom. Dyn., 15 (2011), 7-19.doi: 10.1090/S1088-4173-2011-00223-2. |
[16] |
K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on $\mathbbC^2$, Michigan Math. J., 59 (2010), 153-168.doi: 10.1307/mmj/1272376030. |
[17] |
K. Ueno, Weighted Green functions of nondegenerate polynomial skew products on $\mathbbC^2$, Discrete Contin. Dyn. Syst., 31 (2011), 985-996.doi: 10.3934/dcds.2011.31.985. |
[18] |
K. Ueno, Fiberwise Green functions of skew products semiconjugate to some polynomial products on $\mathbbC^2$, Kodai Math. J., 35 (2012), 345-357.doi: 10.2996/kmj/1341401055. |
[19] |
K. Ueno, Polynomial skew products whose Julia sets have infinitely many symmetries, submitted. |