May  2014, 34(5): 2307-2314. doi: 10.3934/dcds.2014.34.2307

Almost every interval translation map of three intervals is finite type

1. 

Kungliga Tekniska Hogskolan (Royal Institute of Technology), Department of mathematics, SE-100 44, Stockholm, Sweden

Received  November 2012 Revised  August 2013 Published  October 2013

Interval translation maps (ITMs) are a non-invertible generalization of interval exchange transformations (IETs). The dynamics of finite type ITMs is similar to IETs, while infinite type ITMs are known to exhibit new interesting effects. In this paper, we prove the finiteness conjecture for the ITMs of three intervals. Namely, the subset of ITMs of finite type contains an open, dense, and full Lebesgue measure subset of the space of ITMs of three intervals. For this, we show that any ITM of three intervals can be reduced either to a rotation or to a double rotation.
Citation: Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307
References:
[1]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergodic Theory Dynam. Systems, 15 (1995), 821. doi: 10.1017/S0143385700009652. Google Scholar

[2]

H. Bruin, Renormalization in a class of interval translation maps of $d$ branches,, Dyn. Syst., 22 (2007), 11. doi: 10.1080/14689360601028084. Google Scholar

[3]

H. Bruin and G. Clack, Inducing and unique ergodicity of double rotations,, Discrete Contin. Dyn. Syst., 32 (2012), 4133. doi: 10.3934/dcds.2012.32.4133. Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125. doi: 10.1007/BF02785958. Google Scholar

[5]

J. Buzzi, Piecewise isometries have zero topological entropy,, Ergodic Theory Dynam. Systems, 21 (2001), 1371. doi: 10.1017/S0143385701001651. Google Scholar

[6]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383. doi: 10.1017/S0143385703000488. Google Scholar

[7]

A. Goetz, Sofic subshifts and piecewise isometric systems,, Ergodic Theory Dynam. Systems, 19 (1999), 1485. doi: 10.1017/S0143385799151964. Google Scholar

[8]

A. Goetz, Dynamics of piecewise isometries,, Illinois J. Math., 44 (2000), 465. Google Scholar

[9]

A. Goetz, Stability of piecewise rotations and affine maps,, Nonlinearity, 14 (2001), 205. doi: 10.1088/0951-7715/14/2/302. Google Scholar

[10]

J. Schmeling and S. Troubetzkoy, Interval Translation Mappings,, In Dynamical systems (Luminy-Marseille, (1998), 291. Google Scholar

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations,, Discrete Contin. Dyn. Syst., 13 (2005), 515. doi: 10.3934/dcds.2005.13.515. Google Scholar

show all references

References:
[1]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergodic Theory Dynam. Systems, 15 (1995), 821. doi: 10.1017/S0143385700009652. Google Scholar

[2]

H. Bruin, Renormalization in a class of interval translation maps of $d$ branches,, Dyn. Syst., 22 (2007), 11. doi: 10.1080/14689360601028084. Google Scholar

[3]

H. Bruin and G. Clack, Inducing and unique ergodicity of double rotations,, Discrete Contin. Dyn. Syst., 32 (2012), 4133. doi: 10.3934/dcds.2012.32.4133. Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125. doi: 10.1007/BF02785958. Google Scholar

[5]

J. Buzzi, Piecewise isometries have zero topological entropy,, Ergodic Theory Dynam. Systems, 21 (2001), 1371. doi: 10.1017/S0143385701001651. Google Scholar

[6]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383. doi: 10.1017/S0143385703000488. Google Scholar

[7]

A. Goetz, Sofic subshifts and piecewise isometric systems,, Ergodic Theory Dynam. Systems, 19 (1999), 1485. doi: 10.1017/S0143385799151964. Google Scholar

[8]

A. Goetz, Dynamics of piecewise isometries,, Illinois J. Math., 44 (2000), 465. Google Scholar

[9]

A. Goetz, Stability of piecewise rotations and affine maps,, Nonlinearity, 14 (2001), 205. doi: 10.1088/0951-7715/14/2/302. Google Scholar

[10]

J. Schmeling and S. Troubetzkoy, Interval Translation Mappings,, In Dynamical systems (Luminy-Marseille, (1998), 291. Google Scholar

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations,, Discrete Contin. Dyn. Syst., 13 (2005), 515. doi: 10.3934/dcds.2005.13.515. Google Scholar

[1]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[2]

Hideyuki Suzuki, Shunji Ito, Kazuyuki Aihara. Double rotations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 515-532. doi: 10.3934/dcds.2005.13.515

[3]

Dong Han Kim. The dynamical Borel-Cantelli lemma for interval maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 891-900. doi: 10.3934/dcds.2007.17.891

[4]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[5]

Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349

[6]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[7]

Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133

[8]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[9]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[10]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[11]

Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741

[12]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[13]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[14]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[15]

Tatsuya Arai. The structure of dendrites constructed by pointwise P-expansive maps on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 43-61. doi: 10.3934/dcds.2016.36.43

[16]

Oliver Butterley. An alternative approach to generalised BV and the application to expanding interval maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3355-3363. doi: 10.3934/dcds.2013.33.3355

[17]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

[18]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[19]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[20]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]