-
Previous Article
Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity
- DCDS Home
- This Issue
-
Next Article
Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis
Solutions with clustered bubbles and a boundary layer of an elliptic problem
1. | Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241 |
2. | Department of Mathematics, East China Normal University, Shanghai 200241 |
References:
[1] |
Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Nonlinear Anal. Scuola Norm. Sup. Pisa, 4 (1991), 9-25. |
[2] |
Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.
doi: 10.1006/jfan.1993.1053. |
[3] |
W. W. Ao, J. C. Wei and J. Zeng, An optimal bound on the number of interior spike solutions of the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324-1356.
doi: 10.1016/j.jfa.2013.06.016. |
[4] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[5] |
D. M. Cao, E. Noussair and S. S. Yan, Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem, Pacific J. Math., 200 (2001), 19-41.
doi: 10.2140/pjm.2001.200.19. |
[6] |
M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincar Anal. Non Linéaire, 22 (2005), 45-82.
doi: 10.1016/j.anihpc.2004.05.001. |
[7] |
P. Esposito, Estimations à l'intérieur pour un problème elliptique semi-linéaire avec non-linéarité critique, [Interior estimates for some semilinear elliptic problem with critical nonlinearity], Ann. Inst. H. Poincar Anal. Non Linéaire, 24 (2007), 629-644.
doi: 10.1016/j.anihpc.2006.04.004. |
[8] |
N. Ghoussoub and C. F. Gui, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.
doi: 10.1007/PL00004663. |
[9] |
N. Ghoussoub, C. F. Gui and M. J. Zhu, On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations, 26 (2001), 1929-1946.
doi: 10.1081/PDE-100107812. |
[10] |
C. F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.
doi: 10.4153/CJM-2000-024-x. |
[11] |
F.-H. Lin, W.-M. Ni and J. C. Wei, On the number of interior peak solutions for some singularly perturbed Neumann problems, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[12] |
A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5. |
[13] |
W.-M. Ni, Qualitative properties of solutions to elliptic problems, in Stationary partial differential equations, North-Holland, Amsterdam, I (2004), 157-233.
doi: 10.1016/S1874-5733(04)80005-6. |
[14] |
W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[15] |
O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[16] |
O. Rey, An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math., 1 (1999), 405-449.
doi: 10.1142/S0219199799000158. |
[17] |
O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl., 81 (2002), 655-696.
doi: 10.1016/S0021-7824(01)01251-X. |
[18] |
L. P. Wang and J. C. Wei, Solutions with interior bubble and boundary layer for an elliptic problem, Discrete Contin. Dyn. Syst., 21 (2008), 333-351.
doi: 10.3934/dcds.2008.21.333. |
[19] |
J. C. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, in Handbook of Differential Equations: Ationary Partial Differential Equations, Elservier/North-Holland, Amsterdam, V (2008), 487-585.
doi: 10.1016/S1874-5733(08)80013-7. |
[20] |
Z. Q. Wang, High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1003-1029.
doi: 10.1017/S0308210500022617. |
[21] |
J. C. Wei and S. S. Yan, Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity, C. R. Acad. Sci. Paris, 343 (2006), 311-316.
doi: 10.1016/j.crma.2006.07.010. |
[22] |
J. C. Wei and S. S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl. (9), 88 (2007), 350-378.
doi: 10.1016/j.matpur.2007.07.001. |
show all references
References:
[1] |
Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Nonlinear Anal. Scuola Norm. Sup. Pisa, 4 (1991), 9-25. |
[2] |
Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.
doi: 10.1006/jfan.1993.1053. |
[3] |
W. W. Ao, J. C. Wei and J. Zeng, An optimal bound on the number of interior spike solutions of the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324-1356.
doi: 10.1016/j.jfa.2013.06.016. |
[4] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[5] |
D. M. Cao, E. Noussair and S. S. Yan, Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem, Pacific J. Math., 200 (2001), 19-41.
doi: 10.2140/pjm.2001.200.19. |
[6] |
M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincar Anal. Non Linéaire, 22 (2005), 45-82.
doi: 10.1016/j.anihpc.2004.05.001. |
[7] |
P. Esposito, Estimations à l'intérieur pour un problème elliptique semi-linéaire avec non-linéarité critique, [Interior estimates for some semilinear elliptic problem with critical nonlinearity], Ann. Inst. H. Poincar Anal. Non Linéaire, 24 (2007), 629-644.
doi: 10.1016/j.anihpc.2006.04.004. |
[8] |
N. Ghoussoub and C. F. Gui, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.
doi: 10.1007/PL00004663. |
[9] |
N. Ghoussoub, C. F. Gui and M. J. Zhu, On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations, 26 (2001), 1929-1946.
doi: 10.1081/PDE-100107812. |
[10] |
C. F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.
doi: 10.4153/CJM-2000-024-x. |
[11] |
F.-H. Lin, W.-M. Ni and J. C. Wei, On the number of interior peak solutions for some singularly perturbed Neumann problems, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[12] |
A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5. |
[13] |
W.-M. Ni, Qualitative properties of solutions to elliptic problems, in Stationary partial differential equations, North-Holland, Amsterdam, I (2004), 157-233.
doi: 10.1016/S1874-5733(04)80005-6. |
[14] |
W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[15] |
O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[16] |
O. Rey, An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math., 1 (1999), 405-449.
doi: 10.1142/S0219199799000158. |
[17] |
O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl., 81 (2002), 655-696.
doi: 10.1016/S0021-7824(01)01251-X. |
[18] |
L. P. Wang and J. C. Wei, Solutions with interior bubble and boundary layer for an elliptic problem, Discrete Contin. Dyn. Syst., 21 (2008), 333-351.
doi: 10.3934/dcds.2008.21.333. |
[19] |
J. C. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, in Handbook of Differential Equations: Ationary Partial Differential Equations, Elservier/North-Holland, Amsterdam, V (2008), 487-585.
doi: 10.1016/S1874-5733(08)80013-7. |
[20] |
Z. Q. Wang, High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1003-1029.
doi: 10.1017/S0308210500022617. |
[21] |
J. C. Wei and S. S. Yan, Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity, C. R. Acad. Sci. Paris, 343 (2006), 311-316.
doi: 10.1016/j.crma.2006.07.010. |
[22] |
J. C. Wei and S. S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl. (9), 88 (2007), 350-378.
doi: 10.1016/j.matpur.2007.07.001. |
[1] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[2] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[3] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[4] |
Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130 |
[5] |
Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333 |
[6] |
Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449 |
[7] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[8] |
Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929 |
[9] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[10] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[11] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[12] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[13] |
Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 |
[14] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[15] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[16] |
Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure and Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303 |
[17] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[18] |
C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure and Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523 |
[19] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[20] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]