June  2014, 34(6): 2451-2467. doi: 10.3934/dcds.2014.34.2451

A symmetry result for the Ornstein-Uhlenbeck operator

1. 

Dipartimento di Matematica, Università di Padova, Via Trieste 63, I-35121 Padova, Italy

2. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy

3. 

Weierstraß Institut für Angewandte Analysis und Stochastik, Hausvogteiplatz 11A, D-10117 Berlin, Germany

Received  August 2012 Revised  December 2012 Published  December 2013

In 1978 E. De Giorgi formulated a conjecture concerning the one-dimensional symmetry of bounded solutions to the elliptic equation $\Delta u=F'(u)$, which are monotone in some direction. In this paper we prove the analogous statement for the equation $\Delta u- \langle x,\nabla u\rangle u=F'(u)$, where the Laplacian is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without any restriction on the dimension of the ambient space, and this allows us to obtain an similar result in infinite dimensions by a limit procedure.
Citation: Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451
References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces,, J. Funct. Anal., 258 (2010), 785.  doi: 10.1016/j.jfa.2009.09.008.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69.   Google Scholar

[5]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, (1998).   Google Scholar

[6]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for Elliptic PDEs, (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[8]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math. (2), 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[9]

A. Ehrhard, Symmetrization in Gaussian spaces,, Math. Scand., 53 (1983), 281.   Google Scholar

[10]

A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,, Habilitation à Diriger des Recherches, (2002).   Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525.  doi: 10.1016/j.anihpc.2012.01.008.  Google Scholar

[14]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[15]

M. Ledoux, A short proof of the Gaussian isoperimetric inequality,, in High Dimensional Probability (Oberwolfach, (1996), 229.   Google Scholar

[16]

A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures,, Trans. Amer. Math. Soc., 349 (1997), 155.  doi: 10.1090/S0002-9947-97-01802-3.  Google Scholar

[17]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[18]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[19]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[20]

L. Wang, A Bernstein type theorem for self-similar shrinkers,, Geom. Dedicata, 151 (2011), 297.  doi: 10.1007/s10711-010-9535-2.  Google Scholar

show all references

References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces,, J. Funct. Anal., 258 (2010), 785.  doi: 10.1016/j.jfa.2009.09.008.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69.   Google Scholar

[5]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, (1998).   Google Scholar

[6]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for Elliptic PDEs, (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[8]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math. (2), 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[9]

A. Ehrhard, Symmetrization in Gaussian spaces,, Math. Scand., 53 (1983), 281.   Google Scholar

[10]

A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,, Habilitation à Diriger des Recherches, (2002).   Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525.  doi: 10.1016/j.anihpc.2012.01.008.  Google Scholar

[14]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[15]

M. Ledoux, A short proof of the Gaussian isoperimetric inequality,, in High Dimensional Probability (Oberwolfach, (1996), 229.   Google Scholar

[16]

A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures,, Trans. Amer. Math. Soc., 349 (1997), 155.  doi: 10.1090/S0002-9947-97-01802-3.  Google Scholar

[17]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[18]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[19]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[20]

L. Wang, A Bernstein type theorem for self-similar shrinkers,, Geom. Dedicata, 151 (2011), 297.  doi: 10.1007/s10711-010-9535-2.  Google Scholar

[1]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[2]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[3]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[4]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[5]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[6]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[7]

Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049

[8]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[9]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[10]

Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525

[11]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[12]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[13]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[14]

Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020112

[15]

Marita Thomas. Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2741-2761. doi: 10.3934/dcds.2015.35.2741

[16]

Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131

[17]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[18]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[19]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[20]

Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (4)

[Back to Top]