June  2014, 34(6): 2451-2467. doi: 10.3934/dcds.2014.34.2451

A symmetry result for the Ornstein-Uhlenbeck operator

1. 

Dipartimento di Matematica, Università di Padova, Via Trieste 63, I-35121 Padova, Italy

2. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy

3. 

Weierstraß Institut für Angewandte Analysis und Stochastik, Hausvogteiplatz 11A, D-10117 Berlin, Germany

Received  August 2012 Revised  December 2012 Published  December 2013

In 1978 E. De Giorgi formulated a conjecture concerning the one-dimensional symmetry of bounded solutions to the elliptic equation $\Delta u=F'(u)$, which are monotone in some direction. In this paper we prove the analogous statement for the equation $\Delta u- \langle x,\nabla u\rangle u=F'(u)$, where the Laplacian is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without any restriction on the dimension of the ambient space, and this allows us to obtain an similar result in infinite dimensions by a limit procedure.
Citation: Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451
References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces,, J. Funct. Anal., 258 (2010), 785.  doi: 10.1016/j.jfa.2009.09.008.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69.   Google Scholar

[5]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, (1998).   Google Scholar

[6]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for Elliptic PDEs, (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[8]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math. (2), 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[9]

A. Ehrhard, Symmetrization in Gaussian spaces,, Math. Scand., 53 (1983), 281.   Google Scholar

[10]

A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,, Habilitation à Diriger des Recherches, (2002).   Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525.  doi: 10.1016/j.anihpc.2012.01.008.  Google Scholar

[14]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[15]

M. Ledoux, A short proof of the Gaussian isoperimetric inequality,, in High Dimensional Probability (Oberwolfach, (1996), 229.   Google Scholar

[16]

A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures,, Trans. Amer. Math. Soc., 349 (1997), 155.  doi: 10.1090/S0002-9947-97-01802-3.  Google Scholar

[17]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[18]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[19]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[20]

L. Wang, A Bernstein type theorem for self-similar shrinkers,, Geom. Dedicata, 151 (2011), 297.  doi: 10.1007/s10711-010-9535-2.  Google Scholar

show all references

References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces,, J. Funct. Anal., 258 (2010), 785.  doi: 10.1016/j.jfa.2009.09.008.  Google Scholar

[4]

H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69.   Google Scholar

[5]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, (1998).   Google Scholar

[6]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for Elliptic PDEs, (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[8]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math. (2), 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[9]

A. Ehrhard, Symmetrization in Gaussian spaces,, Math. Scand., 53 (1983), 281.   Google Scholar

[10]

A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires,, Habilitation à Diriger des Recherches, (2002).   Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525.  doi: 10.1016/j.anihpc.2012.01.008.  Google Scholar

[14]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[15]

M. Ledoux, A short proof of the Gaussian isoperimetric inequality,, in High Dimensional Probability (Oberwolfach, (1996), 229.   Google Scholar

[16]

A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures,, Trans. Amer. Math. Soc., 349 (1997), 155.  doi: 10.1090/S0002-9947-97-01802-3.  Google Scholar

[17]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[18]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[19]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[20]

L. Wang, A Bernstein type theorem for self-similar shrinkers,, Geom. Dedicata, 151 (2011), 297.  doi: 10.1007/s10711-010-9535-2.  Google Scholar

[1]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[13]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[14]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (8)

[Back to Top]