\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A symmetry result for the Ornstein-Uhlenbeck operator

Abstract / Introduction Related Papers Cited by
  • In 1978 E. De Giorgi formulated a conjecture concerning the one-dimensional symmetry of bounded solutions to the elliptic equation $\Delta u=F'(u)$, which are monotone in some direction. In this paper we prove the analogous statement for the equation $\Delta u- \langle x,\nabla u\rangle u=F'(u)$, where the Laplacian is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without any restriction on the dimension of the ambient space, and this allows us to obtain an similar result in infinite dimensions by a limit procedure.
    Mathematics Subject Classification: Primary: 35J15, 35J20; Secondary: 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526.

    [2]

    L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3.

    [3]

    L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces, J. Funct. Anal., 258 (2010), 785-813.doi: 10.1016/j.jfa.2009.09.008.

    [4]

    H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69-94.

    [5]

    V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.

    [6]

    E. De Giorgi, Convergence problems for functionals and operators, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 131-188.

    [7]

    M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, in Symmetry for Elliptic PDEs, Contemp. Math., 528, Amer. Math. Soc., Providence, RI, 2010, 115-137.doi: 10.1090/conm/528/10418.

    [8]

    K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2), 130 (1989), 453-471.doi: 10.2307/1971452.

    [9]

    A. Ehrhard, Symmetrization in Gaussian spaces, Math. Scand., 53 (1983), 281-301.

    [10]

    A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires, Habilitation à Diriger des Recherches, Paris VI, 2002.

    [11]

    A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.

    [12]

    A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, 2009, 74-96.doi: 10.1142/9789812834744_0004.

    [13]

    M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525-544.doi: 10.1016/j.anihpc.2012.01.008.

    [14]

    N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196.

    [15]

    M. Ledoux, A short proof of the Gaussian isoperimetric inequality, in High Dimensional Probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Basel, 1998, 229-232.

    [16]

    A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures, Trans. Amer. Math. Soc., 349 (1997), 155-169.doi: 10.1090/S0002-9947-97-01802-3.

    [17]

    O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41.

    [18]

    P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.

    [19]

    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081.

    [20]

    L. Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata, 151 (2011), 297-303.doi: 10.1007/s10711-010-9535-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return