Citation: |
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbbR^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
L. Ambrosio, S. Maniglia, M. Miranda, Jr. and D. Pallara, BV functions in abstract Wiener spaces, J. Funct. Anal., 258 (2010), 785-813.doi: 10.1016/j.jfa.2009.09.008. |
[4] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 69-94. |
[5] |
V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998. |
[6] |
E. De Giorgi, Convergence problems for functionals and operators, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 131-188. |
[7] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, in Symmetry for Elliptic PDEs, Contemp. Math., 528, Amer. Math. Soc., Providence, RI, 2010, 115-137.doi: 10.1090/conm/528/10418. |
[8] |
K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2), 130 (1989), 453-471.doi: 10.2307/1971452. |
[9] |
A. Ehrhard, Symmetrization in Gaussian spaces, Math. Scand., 53 (1983), 281-301. |
[10] |
A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires, Habilitation à Diriger des Recherches, Paris VI, 2002. |
[11] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791. |
[12] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, 2009, 74-96.doi: 10.1142/9789812834744_0004. |
[13] |
M. Goldman and M. Novaga, Approximation and relaxation of perimeter in the Wiener space, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 29 (2012), 525-544.doi: 10.1016/j.anihpc.2012.01.008. |
[14] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196. |
[15] |
M. Ledoux, A short proof of the Gaussian isoperimetric inequality, in High Dimensional Probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Basel, 1998, 229-232. |
[16] |
A. Lunardi, On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures, Trans. Amer. Math. Soc., 349 (1997), 155-169.doi: 10.1090/S0002-9947-97-01802-3. |
[17] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41. |
[18] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85. |
[19] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081. |
[20] |
L. Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata, 151 (2011), 297-303.doi: 10.1007/s10711-010-9535-2. |