\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new critical curve for the Lane-Emden system

Abstract Related Papers Cited by
  • We study stable positive radially symmetric solutions for the Lane-Emden system $-\Delta u=v^p$ in $\mathbb{R}^N$, $-\Delta v=u^q$ in $\mathbb{R}^N$, where $p,q\geq 1$. We obtain a new critical curve that optimally describes the existence of such solutions.
    Mathematics Subject Classification: Primary: 35J47, 35J57; Secondary: 26D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.doi: 10.1016/j.anihpc.2003.06.001.

    [2]

    P. Caldiroli and R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), 147-164.doi: 10.1007/s00526-011-0454-3.

    [3]

    C. Cowan, Regularity of stable solutions of a Lane-Emden type system, preprint, arXiv:1206.4273.

    [4]

    C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems, Nonlinearity, 26 (2003), 2357-2371.doi: 10.1088/0951-7715/26/8/2357.

    [5]

    J. Dávila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232.doi: 10.1016/j.jfa.2010.12.028.

    [6]

    J. Dávila, L. Dupaigne and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795-817.doi: 10.3934/cpaa.2008.7.795.

    [7]

    S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.

    [8]

    L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault, The Gel'fand problem for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752.doi: 10.1007/s00205-013-0613-0.

    [9]

    A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.doi: 10.1016/j.matpur.2007.03.001.

    [10]

    H. Hajlaoui, A. Harrabi and D. Ye, On stable solutions of biharmonic problem with polynomial growth, preprint, arXiv:1211.2223.

    [11]

    D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.

    [12]

    F. Gazzola and H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936.doi: 10.1007/s00208-005-0748-x.

    [13]

    P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation, Nonlinearity, 22 (2009), 1653-1661.doi: 10.1088/0951-7715/22/7/009.

    [14]

    E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.doi: 10.1080/03605309308820923.

    [15]

    E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential Integral Equations, 9 (1996), 465-479.

    [16]

    M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.doi: 10.1112/S0024609305004248.

    [17]

    P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.doi: 10.1215/S0012-7094-07-13935-8.

    [18]

    J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, in A tribute to Ilya Bakelman (eds. I. R. Bakelman, S. A. Fulling and S. D. Taliaferro) (College Station, TX, 1993), Discourses Math. Appl., 3, Texas A & M Univ., College Station, TX, 1994, 55-68.

    [19]

    Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.doi: 10.1016/j.aim.2009.02.014.

    [20]

    G. Sweers, Strong positivity in $C(\overline\Omega)$ for elliptic systems, Math. Z., 209 (1992), 251-271.doi: 10.1007/BF02570833.

    [21]

    R. C. A. M Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.doi: 10.1007/BF00375674.

    [22]

    J. Wei, X. Xu and Y. Wen, On the classification of stable solutions to biharmonic problems in large dimensions, Pacific J. Math., 263 (2013), 495-512.doi: 10.2140/pjm.2013.263.495.

    [23]

    J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem, Math. Ann., 356 (2013), 1599-1612.doi: 10.1007/s00208-012-0894-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return