-
Previous Article
On the converse problem for the Gross-Pitaevskii equations with a large parameter
- DCDS Home
- This Issue
-
Next Article
A symmetry result for the Ornstein-Uhlenbeck operator
A new critical curve for the Lane-Emden system
1. | Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile |
2. | Institut Camille Jordan UMR CNRS 5208, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France |
3. | School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland |
References:
[1] |
J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.
doi: 10.1016/j.anihpc.2003.06.001. |
[2] |
P. Caldiroli and R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), 147-164.
doi: 10.1007/s00526-011-0454-3. |
[3] |
C. Cowan, Regularity of stable solutions of a Lane-Emden type system,, preprint, ().
|
[4] |
C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems, Nonlinearity, 26 (2003), 2357-2371.
doi: 10.1088/0951-7715/26/8/2357. |
[5] |
J. Dávila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232.
doi: 10.1016/j.jfa.2010.12.028. |
[6] |
J. Dávila, L. Dupaigne and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795-817.
doi: 10.3934/cpaa.2008.7.795. |
[7] |
S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298. |
[8] |
L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault, The Gel'fand problem for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752.
doi: 10.1007/s00205-013-0613-0. |
[9] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
H. Hajlaoui, A. Harrabi and D. Ye, On stable solutions of biharmonic problem with polynomial growth,, preprint, ().
|
[11] |
D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (): 241.
|
[12] |
F. Gazzola and H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936.
doi: 10.1007/s00208-005-0748-x. |
[13] |
P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation, Nonlinearity, 22 (2009), 1653-1661.
doi: 10.1088/0951-7715/22/7/009. |
[14] |
E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[15] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential Integral Equations, 9 (1996), 465-479. |
[16] |
M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248. |
[17] |
P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[18] |
J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, in A tribute to Ilya Bakelman (eds. I. R. Bakelman, S. A. Fulling and S. D. Taliaferro) (College Station, TX, 1993), Discourses Math. Appl., 3, Texas A & M Univ., College Station, TX, 1994, 55-68. |
[19] |
Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[20] |
G. Sweers, Strong positivity in $C(\overline\Omega)$ for elliptic systems, Math. Z., 209 (1992), 251-271.
doi: 10.1007/BF02570833. |
[21] |
R. C. A. M Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.
doi: 10.1007/BF00375674. |
[22] |
J. Wei, X. Xu and Y. Wen, On the classification of stable solutions to biharmonic problems in large dimensions, Pacific J. Math., 263 (2013), 495-512.
doi: 10.2140/pjm.2013.263.495. |
[23] |
J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem, Math. Ann., 356 (2013), 1599-1612.
doi: 10.1007/s00208-012-0894-x. |
show all references
References:
[1] |
J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.
doi: 10.1016/j.anihpc.2003.06.001. |
[2] |
P. Caldiroli and R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), 147-164.
doi: 10.1007/s00526-011-0454-3. |
[3] |
C. Cowan, Regularity of stable solutions of a Lane-Emden type system,, preprint, ().
|
[4] |
C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems, Nonlinearity, 26 (2003), 2357-2371.
doi: 10.1088/0951-7715/26/8/2357. |
[5] |
J. Dávila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232.
doi: 10.1016/j.jfa.2010.12.028. |
[6] |
J. Dávila, L. Dupaigne and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795-817.
doi: 10.3934/cpaa.2008.7.795. |
[7] |
S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298. |
[8] |
L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault, The Gel'fand problem for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752.
doi: 10.1007/s00205-013-0613-0. |
[9] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
H. Hajlaoui, A. Harrabi and D. Ye, On stable solutions of biharmonic problem with polynomial growth,, preprint, ().
|
[11] |
D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (): 241.
|
[12] |
F. Gazzola and H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936.
doi: 10.1007/s00208-005-0748-x. |
[13] |
P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation, Nonlinearity, 22 (2009), 1653-1661.
doi: 10.1088/0951-7715/22/7/009. |
[14] |
E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[15] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential Integral Equations, 9 (1996), 465-479. |
[16] |
M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248. |
[17] |
P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[18] |
J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, in A tribute to Ilya Bakelman (eds. I. R. Bakelman, S. A. Fulling and S. D. Taliaferro) (College Station, TX, 1993), Discourses Math. Appl., 3, Texas A & M Univ., College Station, TX, 1994, 55-68. |
[19] |
Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[20] |
G. Sweers, Strong positivity in $C(\overline\Omega)$ for elliptic systems, Math. Z., 209 (1992), 251-271.
doi: 10.1007/BF02570833. |
[21] |
R. C. A. M Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.
doi: 10.1007/BF00375674. |
[22] |
J. Wei, X. Xu and Y. Wen, On the classification of stable solutions to biharmonic problems in large dimensions, Pacific J. Math., 263 (2013), 495-512.
doi: 10.2140/pjm.2013.263.495. |
[23] |
J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem, Math. Ann., 356 (2013), 1599-1612.
doi: 10.1007/s00208-012-0894-x. |
[1] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[2] |
Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011 |
[3] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036 |
[4] |
Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094 |
[5] |
Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 |
[6] |
Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167 |
[7] |
Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677 |
[8] |
Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510 |
[9] |
Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022073 |
[10] |
Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793 |
[11] |
Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427 |
[12] |
J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022045 |
[13] |
Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184 |
[14] |
Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297 |
[15] |
Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989 |
[16] |
István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003 |
[17] |
Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193 |
[18] |
Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure and Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453 |
[19] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[20] |
Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]