-
Previous Article
Random attractors for non-autonomous stochastic wave equations with multiplicative noise
- DCDS Home
- This Issue
-
Next Article
Uniform attractor of the non-autonomous discrete Selkov model
Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions
1. | Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russian Federation |
2. | Department of Mathematics and Mechanics, Saint-Petersburg State University, Saint-Petersburg, 198504 |
References:
[1] |
Ju. M. Berezans'kiĭ, "Expansions in Eigenfunctions of Selfadjoint Operators,", Naukova Dumka, 17 (1968).
|
[2] |
V. A. Boichenko, G. A. Leonov and V. Reitmann, "Dimension Theory for Ordinary Differential Equations,", Teubner, (2004).
doi: 10.1007/978-3-322-80055-8. |
[3] |
H. Brézis, Problemes unilateraux,, J. Math. Pures. Appl., 51 (1972), 1.
|
[4] |
V. A. Brusin, The Luré equations in Hilbert space and its solvability,, (in Russian) Prikl. Math. Mekh., 40 (1976), 947.
|
[5] |
R. Datko, Extending a theorem of A. M. Liapunov to Hilbert spaces,, J. Math. Anal. Appl., 32 (1970), 610.
doi: 10.1016/0022-247X(70)90283-0. |
[6] |
G. Duvant and J.-L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).
|
[7] |
I. N. Ermakov, Y. N. Kalinin and V. Reitmann, Determining modes and almost periodic integrals for cocycles,, J. Differential Equations, 47 (2011), 1837.
|
[8] |
D. Henry, "Geometric Theory of Semilimear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).
|
[9] |
F. Flandoli, J. Lasiecka and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems,, Annali di Matematica Pura Applicata, 153 (1988), 307.
doi: 10.1007/BF01762397. |
[10] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations,, J. Diff. Eq., 73 (1988), 309.
doi: 10.1016/0022-0396(88)90110-6. |
[11] |
D. Kalinichenko, V. Reitmann and S. Skopinov, Asymptotic behaviour of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion,, in, (2012). Google Scholar |
[12] |
Y. N. Kalinin and V. Reitmann, Almost periodic solutions in control systems with monotone nonlinearities,, Differential Equations and Control Processes, 4 (2012), 40. Google Scholar |
[13] |
Y. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic behavior of Maxwell's equation in one-space dimension with termal effect,, Discrete and Cont. Dyn. Sys. Supplement 2011, 2 (2011), 754.
|
[14] |
H. Kantz and V. Reitmann, "Reconstructing Attractors of Infinite-Dimensional Dynamical Systems from Low-Dimensional Projections,", Workshop on Multivaluate Time Series Analysis, (2004). Google Scholar |
[15] |
O. A. Ladyzhenskaya, On estimates of the fractal dimension and the number of determining modes for invariant sets of dynamical systems,, (in Russian) Zapiski Nauchnich Seminarov LOMI, 163 (1987), 105.
doi: 10.1007/BF02208714. |
[16] |
A. L. Likhtarnikov, Absolute stability criteria for nonlinear operator equations,, (in Russian) Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1064.
|
[17] |
A. L. Likhtarnikov and V. A. Yakubovich, The frequency theorem for equations of evolutionary type,, (in Russian) Siberian Math. J., 17 (1976), 790.
doi: 10.1007/BF00966379. |
[18] |
A. L. Likhtarnikov and V. A. Yakubovich, The frequency theorem for continuous one-parameter semigroups,, (in Russian) Math. USSR-Izv., 11 (1977), 849. Google Scholar |
[19] |
A. L. Likhtarnikov and V. A. Yakubovich, Dichotomy and stability of uncertain nonlinear systems in Hilbert spaces,, (in Russian) Algebra and Analysis, 9 (1997), 132.
|
[20] |
J. Louis and D. Wexler, The Hilbert space regulator problem and operator Riccati equation under stabilizability,, Annales de la Societe Scientifique de Bruxelles, 105 (1991), 137.
|
[21] |
R. V. Manoranjan and H.-M. Yin, On two-phase Stefan problem arising from a microwave heating process,, J. Continuous and Discrete Dynamical Systems, 15 (2006), 1155.
doi: 10.3934/dcds.2006.15.1155. |
[22] |
A. Pankov, "Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations,", Mathematics and its Applications (Soviet Series), 55 (1990).
doi: 10.1007/978-94-011-9682-6. |
[23] |
S. Popov, Taken's time delay embedding theorem for dynamical systems on infinite-dimensional manifolds,, in, (2011). Google Scholar |
[24] |
J. C. Robinson, Inertial manifolds and the cone condition,, Dyn. Syst. Appl., 2 (1993), 311.
|
[25] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001).
doi: 10.1007/978-94-010-0732-0. |
[26] |
J. C. Robinson, Taken's embedding theorem for infinite-dimensional dynamical systems,, J. Nonlinearity, 18 (2005), 2135.
doi: 10.1088/0951-7715/18/5/013. |
[27] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Springer, (1990).
|
[28] |
R. A. Smith, Orbital stability of ordinary differential equations,, J. Differential Equations, 69 (1986), 265.
doi: 10.1016/0022-0396(87)90120-3. |
[29] |
R. A. Smith, Convergence theorems for periodic retarded functional differential equations,, Proc. London Math. Soc., 60 (1990), 581.
doi: 10.1112/plms/s3-60.3.581. |
[30] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970).
|
[31] |
V. A. Yakubovich, The frequency theorem in control theory,, (in Russian) Sibirsk. Matem. Zh., 14 (1973), 384.
doi: 10.1007/BF00967952. |
show all references
References:
[1] |
Ju. M. Berezans'kiĭ, "Expansions in Eigenfunctions of Selfadjoint Operators,", Naukova Dumka, 17 (1968).
|
[2] |
V. A. Boichenko, G. A. Leonov and V. Reitmann, "Dimension Theory for Ordinary Differential Equations,", Teubner, (2004).
doi: 10.1007/978-3-322-80055-8. |
[3] |
H. Brézis, Problemes unilateraux,, J. Math. Pures. Appl., 51 (1972), 1.
|
[4] |
V. A. Brusin, The Luré equations in Hilbert space and its solvability,, (in Russian) Prikl. Math. Mekh., 40 (1976), 947.
|
[5] |
R. Datko, Extending a theorem of A. M. Liapunov to Hilbert spaces,, J. Math. Anal. Appl., 32 (1970), 610.
doi: 10.1016/0022-247X(70)90283-0. |
[6] |
G. Duvant and J.-L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).
|
[7] |
I. N. Ermakov, Y. N. Kalinin and V. Reitmann, Determining modes and almost periodic integrals for cocycles,, J. Differential Equations, 47 (2011), 1837.
|
[8] |
D. Henry, "Geometric Theory of Semilimear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).
|
[9] |
F. Flandoli, J. Lasiecka and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems,, Annali di Matematica Pura Applicata, 153 (1988), 307.
doi: 10.1007/BF01762397. |
[10] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations,, J. Diff. Eq., 73 (1988), 309.
doi: 10.1016/0022-0396(88)90110-6. |
[11] |
D. Kalinichenko, V. Reitmann and S. Skopinov, Asymptotic behaviour of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion,, in, (2012). Google Scholar |
[12] |
Y. N. Kalinin and V. Reitmann, Almost periodic solutions in control systems with monotone nonlinearities,, Differential Equations and Control Processes, 4 (2012), 40. Google Scholar |
[13] |
Y. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic behavior of Maxwell's equation in one-space dimension with termal effect,, Discrete and Cont. Dyn. Sys. Supplement 2011, 2 (2011), 754.
|
[14] |
H. Kantz and V. Reitmann, "Reconstructing Attractors of Infinite-Dimensional Dynamical Systems from Low-Dimensional Projections,", Workshop on Multivaluate Time Series Analysis, (2004). Google Scholar |
[15] |
O. A. Ladyzhenskaya, On estimates of the fractal dimension and the number of determining modes for invariant sets of dynamical systems,, (in Russian) Zapiski Nauchnich Seminarov LOMI, 163 (1987), 105.
doi: 10.1007/BF02208714. |
[16] |
A. L. Likhtarnikov, Absolute stability criteria for nonlinear operator equations,, (in Russian) Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1064.
|
[17] |
A. L. Likhtarnikov and V. A. Yakubovich, The frequency theorem for equations of evolutionary type,, (in Russian) Siberian Math. J., 17 (1976), 790.
doi: 10.1007/BF00966379. |
[18] |
A. L. Likhtarnikov and V. A. Yakubovich, The frequency theorem for continuous one-parameter semigroups,, (in Russian) Math. USSR-Izv., 11 (1977), 849. Google Scholar |
[19] |
A. L. Likhtarnikov and V. A. Yakubovich, Dichotomy and stability of uncertain nonlinear systems in Hilbert spaces,, (in Russian) Algebra and Analysis, 9 (1997), 132.
|
[20] |
J. Louis and D. Wexler, The Hilbert space regulator problem and operator Riccati equation under stabilizability,, Annales de la Societe Scientifique de Bruxelles, 105 (1991), 137.
|
[21] |
R. V. Manoranjan and H.-M. Yin, On two-phase Stefan problem arising from a microwave heating process,, J. Continuous and Discrete Dynamical Systems, 15 (2006), 1155.
doi: 10.3934/dcds.2006.15.1155. |
[22] |
A. Pankov, "Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations,", Mathematics and its Applications (Soviet Series), 55 (1990).
doi: 10.1007/978-94-011-9682-6. |
[23] |
S. Popov, Taken's time delay embedding theorem for dynamical systems on infinite-dimensional manifolds,, in, (2011). Google Scholar |
[24] |
J. C. Robinson, Inertial manifolds and the cone condition,, Dyn. Syst. Appl., 2 (1993), 311.
|
[25] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001).
doi: 10.1007/978-94-010-0732-0. |
[26] |
J. C. Robinson, Taken's embedding theorem for infinite-dimensional dynamical systems,, J. Nonlinearity, 18 (2005), 2135.
doi: 10.1088/0951-7715/18/5/013. |
[27] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Springer, (1990).
|
[28] |
R. A. Smith, Orbital stability of ordinary differential equations,, J. Differential Equations, 69 (1986), 265.
doi: 10.1016/0022-0396(87)90120-3. |
[29] |
R. A. Smith, Convergence theorems for periodic retarded functional differential equations,, Proc. London Math. Soc., 60 (1990), 581.
doi: 10.1112/plms/s3-60.3.581. |
[30] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970).
|
[31] |
V. A. Yakubovich, The frequency theorem in control theory,, (in Russian) Sibirsk. Matem. Zh., 14 (1973), 384.
doi: 10.1007/BF00967952. |
[1] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[2] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222 |
[3] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[4] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[5] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[6] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[7] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[8] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[9] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[10] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[11] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
[12] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[13] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[14] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[15] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[16] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[17] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[18] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[19] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[20] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]