June  2014, 34(6): 2505-2511. doi: 10.3934/dcds.2014.34.2505

Some symmetry results for entire solutions of an elliptic system arising in phase separation

1. 

LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France

Received  February 2013 Revised  April 2013 Published  December 2013

We study the one dimensional symmetry of entire solutions to an elliptic system arising in phase separation for Bose-Einstein condensates with multiple states. We prove that any monotone solution, with arbitrary algebraic growth at infinity, must be one dimensional in the case of two spatial variables. We also prove the one dimensional symmetry for half-monotone solutions, i.e., for solutions having only one monotone component.
Citation: Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505
References:
[1]

H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, Arch. Ration. Mech. Anal., 208 (2013), 163. doi: 10.1007/s00205-012-0595-3. Google Scholar

[2]

H. Berestycki, S. Terracini, K. Wang and J. Wei, On entire solutions of an elliptic system modeling phase separation,, Adv. Math., 243 (2013), 102. doi: 10.1016/j.aim.2013.04.012. Google Scholar

[3]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131. Google Scholar

[4]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74. doi: 10.1142/9789812834744_0004. Google Scholar

[5]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Holder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267. Google Scholar

show all references

References:
[1]

H. Berestycki, T.-C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, Arch. Ration. Mech. Anal., 208 (2013), 163. doi: 10.1007/s00205-012-0595-3. Google Scholar

[2]

H. Berestycki, S. Terracini, K. Wang and J. Wei, On entire solutions of an elliptic system modeling phase separation,, Adv. Math., 243 (2013), 102. doi: 10.1016/j.aim.2013.04.012. Google Scholar

[3]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131. Google Scholar

[4]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 74. doi: 10.1142/9789812834744_0004. Google Scholar

[5]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Holder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267. Google Scholar

[1]

Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022

[2]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[3]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[4]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020045

[5]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure & Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

[6]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[7]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[8]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[9]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[10]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[11]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[12]

Stefano Biagi, Enrico Valdinoci, Eugenio Vecchi. A symmetry result for elliptic systems in punctured domains. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2819-2833. doi: 10.3934/cpaa.2019126

[13]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[14]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[15]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[16]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[17]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[18]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[19]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[20]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]