June  2014, 34(6): 2617-2637. doi: 10.3934/dcds.2014.34.2617

Classification of radial solutions to Liouville systems with singularities

1. 

Taida Institute of Mathematical Sciences and Center for Advanced Study in Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan

2. 

Department of Mathematics, University of Florida, 358 Little Hall, P.O.Box 118105, Gainesville, Florida 32611-8105, United States

Received  September 2012 Revised  June 2013 Published  December 2013

Let $A=(a_{ij})_{n\times n}$ be a nonnegative, symmetric, irreducible and invertible matrix. We prove the existence and uniqueness of radial solutions to the following Liouville system with singularity: \begin{eqnarray*} \left\{ \begin{array}{lcl} \Delta u_i+\sum_{j=1}^n a_{ij}|x|^{\beta_j}e^{u_j(x)}=0,\quad \mathbb R^2, \quad i=1,...,n\\ \\ \int_{\mathbb R^2}|x|^{\beta_i}e^{u_i(x)}dx<\infty, \quad i=1,...,n \end{array}\right. \end{eqnarray*} where $\beta_1,...,\beta_n$ are constants greater than $-2$. If all $\beta_i$s are negative we prove that all solutions are radial and the linearized system is non-degenerate.
Citation: Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617
References:
[1]

D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations, 29 (2004), 1241.  doi: 10.1081/PDE-200033739.  Google Scholar

[2]

W. H. Bennet, Magnetically self-focusing streams,, Phys. Rev., 45 (1934), 890.   Google Scholar

[3]

S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type,, Geom. Funct. Anal., 5 (1995), 924.  doi: 10.1007/BF01902215.  Google Scholar

[4]

S.-Y. Chang, M. Gursky and P. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. and PDE, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[5]

S.-Y. Chang and P. Yang, Prescribing Gaussian curvatuare on S2,, Acta Math., 159 (1987), 215.  doi: 10.1007/BF02392560.  Google Scholar

[6]

C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.   Google Scholar

[7]

C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.  doi: 10.1002/cpa.3014.  Google Scholar

[8]

C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete and Continuous Dynamic Systems, 28 (2010), 1237.  doi: 10.3934/dcds.2010.28.1237.  Google Scholar

[9]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[10]

W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb R^2$,, Duke Math. J., 71 (1993), 427.  doi: 10.1215/S0012-7094-93-07117-7.  Google Scholar

[11]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[12]

M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems,, J. Differential Equations, 140 (1997), 59.  doi: 10.1006/jdeq.1997.3316.  Google Scholar

[13]

M. Chipot, I. Shafrir and G. Wolansky, Erratum: "On the solutions of Liouville systems'' [J. Differential Equations, 140 (1997), 59-105; MR1473855],, J. Differential Equations, 178 (2002).   Google Scholar

[14]

P. Debye and E. Huckel, Zur theorie der electrolyte,, Phys. Zft, 24 (1923), 305.   Google Scholar

[15]

J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Letter, 64 (1990), 2230.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[16]

R. Jackiw and E. J. Weinberg, Selfdual Chern Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[17]

J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.  doi: 10.1002/cpa.20099.  Google Scholar

[18]

J. Jost and G. Wang, Classification of solutions of a Toda system in $\mathbb R^ 2$,, Int. Math. Res. Not., 2002 (): 277.  doi: 10.1155/S1073792802105022.  Google Scholar

[19]

J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality,, Comm. Pure Appl. Math., 54 (2001), 1289.  doi: 10.1002/cpa.10004.  Google Scholar

[20]

J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math. (2), 99 (1974), 14.  doi: 10.2307/1971012.  Google Scholar

[21]

E. F. Keller and L. A. Segel, Traveling bands of Chemotactic Bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[22]

M. K.-H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's pinch and generalizations,, Phys. Plasmas, 1 (1994), 1841.  doi: 10.1063/1.870639.  Google Scholar

[23]

Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.  doi: 10.1007/s002200050536.  Google Scholar

[24]

C.-S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117.  doi: 10.1016/j.anihpc.2009.09.001.  Google Scholar

[25]

C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type,, Comm. Pure Appl. Math., 64 (2011), 556.  doi: 10.1002/cpa.20355.  Google Scholar

[26]

M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices,, J. Math. Anal. Appl., 49 (1975), 215.  doi: 10.1016/0022-247X(75)90172-9.  Google Scholar

[27]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory,, Calc. Var. and PDE, 9 (1999), 31.  doi: 10.1007/s005260050132.  Google Scholar

[28]

J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967.  doi: 10.1017/S0308210500001219.  Google Scholar

[29]

I. Rubinstein, Electro Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990).  doi: 10.1137/1.9781611970814.  Google Scholar

[30]

L. Zhang, Blow up solutions of some nonlinear elliptic equations involving exponential nonlinearities,, Comm. Math. Phys., 268 (2006), 105.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

[31]

L. Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data,, Commun. Contemp. Math., 11 (2009), 395.  doi: 10.1142/S0219199709003417.  Google Scholar

show all references

References:
[1]

D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations, 29 (2004), 1241.  doi: 10.1081/PDE-200033739.  Google Scholar

[2]

W. H. Bennet, Magnetically self-focusing streams,, Phys. Rev., 45 (1934), 890.   Google Scholar

[3]

S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type,, Geom. Funct. Anal., 5 (1995), 924.  doi: 10.1007/BF01902215.  Google Scholar

[4]

S.-Y. Chang, M. Gursky and P. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. and PDE, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[5]

S.-Y. Chang and P. Yang, Prescribing Gaussian curvatuare on S2,, Acta Math., 159 (1987), 215.  doi: 10.1007/BF02392560.  Google Scholar

[6]

C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.   Google Scholar

[7]

C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.  doi: 10.1002/cpa.3014.  Google Scholar

[8]

C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete and Continuous Dynamic Systems, 28 (2010), 1237.  doi: 10.3934/dcds.2010.28.1237.  Google Scholar

[9]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[10]

W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb R^2$,, Duke Math. J., 71 (1993), 427.  doi: 10.1215/S0012-7094-93-07117-7.  Google Scholar

[11]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[12]

M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems,, J. Differential Equations, 140 (1997), 59.  doi: 10.1006/jdeq.1997.3316.  Google Scholar

[13]

M. Chipot, I. Shafrir and G. Wolansky, Erratum: "On the solutions of Liouville systems'' [J. Differential Equations, 140 (1997), 59-105; MR1473855],, J. Differential Equations, 178 (2002).   Google Scholar

[14]

P. Debye and E. Huckel, Zur theorie der electrolyte,, Phys. Zft, 24 (1923), 305.   Google Scholar

[15]

J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Letter, 64 (1990), 2230.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[16]

R. Jackiw and E. J. Weinberg, Selfdual Chern Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[17]

J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.  doi: 10.1002/cpa.20099.  Google Scholar

[18]

J. Jost and G. Wang, Classification of solutions of a Toda system in $\mathbb R^ 2$,, Int. Math. Res. Not., 2002 (): 277.  doi: 10.1155/S1073792802105022.  Google Scholar

[19]

J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality,, Comm. Pure Appl. Math., 54 (2001), 1289.  doi: 10.1002/cpa.10004.  Google Scholar

[20]

J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math. (2), 99 (1974), 14.  doi: 10.2307/1971012.  Google Scholar

[21]

E. F. Keller and L. A. Segel, Traveling bands of Chemotactic Bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[22]

M. K.-H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's pinch and generalizations,, Phys. Plasmas, 1 (1994), 1841.  doi: 10.1063/1.870639.  Google Scholar

[23]

Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.  doi: 10.1007/s002200050536.  Google Scholar

[24]

C.-S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117.  doi: 10.1016/j.anihpc.2009.09.001.  Google Scholar

[25]

C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type,, Comm. Pure Appl. Math., 64 (2011), 556.  doi: 10.1002/cpa.20355.  Google Scholar

[26]

M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices,, J. Math. Anal. Appl., 49 (1975), 215.  doi: 10.1016/0022-247X(75)90172-9.  Google Scholar

[27]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory,, Calc. Var. and PDE, 9 (1999), 31.  doi: 10.1007/s005260050132.  Google Scholar

[28]

J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967.  doi: 10.1017/S0308210500001219.  Google Scholar

[29]

I. Rubinstein, Electro Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990).  doi: 10.1137/1.9781611970814.  Google Scholar

[30]

L. Zhang, Blow up solutions of some nonlinear elliptic equations involving exponential nonlinearities,, Comm. Math. Phys., 268 (2006), 105.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

[31]

L. Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data,, Commun. Contemp. Math., 11 (2009), 395.  doi: 10.1142/S0219199709003417.  Google Scholar

[1]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[7]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[10]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[11]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[12]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[13]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[14]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[15]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[16]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[17]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[18]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]