\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classification of radial solutions to Liouville systems with singularities

Abstract / Introduction Related Papers Cited by
  • Let $A=(a_{ij})_{n\times n}$ be a nonnegative, symmetric, irreducible and invertible matrix. We prove the existence and uniqueness of radial solutions to the following Liouville system with singularity: \begin{eqnarray*} \left\{ \begin{array}{lcl} \Delta u_i+\sum_{j=1}^n a_{ij}|x|^{\beta_j}e^{u_j(x)}=0,\quad \mathbb R^2, \quad i=1,...,n\\ \\ \int_{\mathbb R^2}|x|^{\beta_i}e^{u_i(x)}dx<\infty, \quad i=1,...,n \end{array}\right. \end{eqnarray*} where $\beta_1,...,\beta_n$ are constants greater than $-2$. If all $\beta_i$s are negative we prove that all solutions are radial and the linearized system is non-degenerate.
    Mathematics Subject Classification: Primary: 35J47; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations, 29 (2004), 1241-1265.doi: 10.1081/PDE-200033739.

    [2]

    W. H. Bennet, Magnetically self-focusing streams, Phys. Rev., 45 (1934), 890-897.

    [3]

    S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal., 5 (1995), 924-947.doi: 10.1007/BF01902215.

    [4]

    S.-Y. Chang, M. Gursky and P. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. and PDE, 1 (1993), 205-229.doi: 10.1007/BF01191617.

    [5]

    S.-Y. Chang and P. Yang, Prescribing Gaussian curvatuare on S2, Acta Math., 159 (1987), 215-259.doi: 10.1007/BF02392560.

    [6]

    C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II, J. Differential Geom., 49 (1998), 115-178.

    [7]

    C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.doi: 10.1002/cpa.3014.

    [8]

    C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates, Discrete and Continuous Dynamic Systems, 28 (2010), 1237-1272.doi: 10.3934/dcds.2010.28.1237.

    [9]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [10]

    W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb R^2$, Duke Math. J., 71 (1993), 427-439.doi: 10.1215/S0012-7094-93-07117-7.

    [11]

    S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.doi: 10.1016/0025-5564(81)90055-9.

    [12]

    M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems, J. Differential Equations, 140 (1997), 59-105.doi: 10.1006/jdeq.1997.3316.

    [13]

    M. Chipot, I. Shafrir and G. Wolansky, Erratum: "On the solutions of Liouville systems'' [J. Differential Equations, 140 (1997), 59-105; MR1473855], J. Differential Equations, 178 (2002), 630.

    [14]

    P. Debye and E. Huckel, Zur theorie der electrolyte, Phys. Zft, 24 (1923), 305-325.

    [15]

    J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Letter, 64 (1990), 2230-2233.doi: 10.1103/PhysRevLett.64.2230.

    [16]

    R. Jackiw and E. J. Weinberg, Selfdual Chern Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237.doi: 10.1103/PhysRevLett.64.2234.

    [17]

    J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., 59 (2006), 526-558.doi: 10.1002/cpa.20099.

    [18]

    J. Jost and G. Wang, Classification of solutions of a Toda system in $\mathbb R^ 2$, Int. Math. Res. Not., 2002, 277-290. doi: 10.1155/S1073792802105022.

    [19]

    J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality, Comm. Pure Appl. Math., 54 (2001), 1289-1319.doi: 10.1002/cpa.10004.

    [20]

    J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2), 99 (1974), 14-47.doi: 10.2307/1971012.

    [21]

    E. F. Keller and L. A. Segel, Traveling bands of Chemotactic Bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.doi: 10.1016/0022-5193(71)90051-8.

    [22]

    M. K.-H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's pinch and generalizations, Phys. Plasmas, 1 (1994), 1841-1849.doi: 10.1063/1.870639.

    [23]

    Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.doi: 10.1007/s002200050536.

    [24]

    C.-S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117-143.doi: 10.1016/j.anihpc.2009.09.001.

    [25]

    C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type, Comm. Pure Appl. Math., 64 (2011), 556-590.doi: 10.1002/cpa.20355.

    [26]

    M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49 (1975), 215-225.doi: 10.1016/0022-247X(75)90172-9.

    [27]

    M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. and PDE, 9 (1999), 31-34.doi: 10.1007/s005260050132.

    [28]

    J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967-985.doi: 10.1017/S0308210500001219.

    [29]

    I. Rubinstein, Electro Diffusion of Ions, SIAM Studies in Applied Mathematics, 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.doi: 10.1137/1.9781611970814.

    [30]

    L. Zhang, Blow up solutions of some nonlinear elliptic equations involving exponential nonlinearities, Comm. Math. Phys., 268 (2006), 105-133.doi: 10.1007/s00220-006-0092-3.

    [31]

    L. Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data, Commun. Contemp. Math., 11 (2009), 395-411.doi: 10.1142/S0219199709003417.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return