-
Previous Article
Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$
- DCDS Home
- This Issue
-
Next Article
Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations
Classification of radial solutions to Liouville systems with singularities
1. | Taida Institute of Mathematical Sciences and Center for Advanced Study in Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan |
2. | Department of Mathematics, University of Florida, 358 Little Hall, P.O.Box 118105, Gainesville, Florida 32611-8105, United States |
References:
[1] |
D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations, 29 (2004), 1241.
doi: 10.1081/PDE-200033739. |
[2] |
W. H. Bennet, Magnetically self-focusing streams,, Phys. Rev., 45 (1934), 890. Google Scholar |
[3] |
S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type,, Geom. Funct. Anal., 5 (1995), 924.
doi: 10.1007/BF01902215. |
[4] |
S.-Y. Chang, M. Gursky and P. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. and PDE, 1 (1993), 205.
doi: 10.1007/BF01191617. |
[5] |
S.-Y. Chang and P. Yang, Prescribing Gaussian curvatuare on S2,, Acta Math., 159 (1987), 215.
doi: 10.1007/BF02392560. |
[6] |
C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.
|
[7] |
C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.
doi: 10.1002/cpa.3014. |
[8] |
C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete and Continuous Dynamic Systems, 28 (2010), 1237.
doi: 10.3934/dcds.2010.28.1237. |
[9] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[10] |
W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb R^2$,, Duke Math. J., 71 (1993), 427.
doi: 10.1215/S0012-7094-93-07117-7. |
[11] |
S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.
doi: 10.1016/0025-5564(81)90055-9. |
[12] |
M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems,, J. Differential Equations, 140 (1997), 59.
doi: 10.1006/jdeq.1997.3316. |
[13] |
M. Chipot, I. Shafrir and G. Wolansky, Erratum: "On the solutions of Liouville systems'' [J. Differential Equations, 140 (1997), 59-105; MR1473855],, J. Differential Equations, 178 (2002).
|
[14] |
P. Debye and E. Huckel, Zur theorie der electrolyte,, Phys. Zft, 24 (1923), 305. Google Scholar |
[15] |
J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Letter, 64 (1990), 2230.
doi: 10.1103/PhysRevLett.64.2230. |
[16] |
R. Jackiw and E. J. Weinberg, Selfdual Chern Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.
doi: 10.1103/PhysRevLett.64.2234. |
[17] |
J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.
doi: 10.1002/cpa.20099. |
[18] |
J. Jost and G. Wang, Classification of solutions of a Toda system in $\mathbb R^ 2$,, Int. Math. Res. Not., 2002 (): 277.
doi: 10.1155/S1073792802105022. |
[19] |
J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality,, Comm. Pure Appl. Math., 54 (2001), 1289.
doi: 10.1002/cpa.10004. |
[20] |
J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math. (2), 99 (1974), 14.
doi: 10.2307/1971012. |
[21] |
E. F. Keller and L. A. Segel, Traveling bands of Chemotactic Bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235.
doi: 10.1016/0022-5193(71)90051-8. |
[22] |
M. K.-H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's pinch and generalizations,, Phys. Plasmas, 1 (1994), 1841.
doi: 10.1063/1.870639. |
[23] |
Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.
doi: 10.1007/s002200050536. |
[24] |
C.-S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117.
doi: 10.1016/j.anihpc.2009.09.001. |
[25] |
C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type,, Comm. Pure Appl. Math., 64 (2011), 556.
doi: 10.1002/cpa.20355. |
[26] |
M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices,, J. Math. Anal. Appl., 49 (1975), 215.
doi: 10.1016/0022-247X(75)90172-9. |
[27] |
M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory,, Calc. Var. and PDE, 9 (1999), 31.
doi: 10.1007/s005260050132. |
[28] |
J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967.
doi: 10.1017/S0308210500001219. |
[29] |
I. Rubinstein, Electro Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990).
doi: 10.1137/1.9781611970814. |
[30] |
L. Zhang, Blow up solutions of some nonlinear elliptic equations involving exponential nonlinearities,, Comm. Math. Phys., 268 (2006), 105.
doi: 10.1007/s00220-006-0092-3. |
[31] |
L. Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data,, Commun. Contemp. Math., 11 (2009), 395.
doi: 10.1142/S0219199709003417. |
show all references
References:
[1] |
D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations, 29 (2004), 1241.
doi: 10.1081/PDE-200033739. |
[2] |
W. H. Bennet, Magnetically self-focusing streams,, Phys. Rev., 45 (1934), 890. Google Scholar |
[3] |
S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type,, Geom. Funct. Anal., 5 (1995), 924.
doi: 10.1007/BF01902215. |
[4] |
S.-Y. Chang, M. Gursky and P. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. and PDE, 1 (1993), 205.
doi: 10.1007/BF01191617. |
[5] |
S.-Y. Chang and P. Yang, Prescribing Gaussian curvatuare on S2,, Acta Math., 159 (1987), 215.
doi: 10.1007/BF02392560. |
[6] |
C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.
|
[7] |
C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.
doi: 10.1002/cpa.3014. |
[8] |
C.-C. Chen and C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete and Continuous Dynamic Systems, 28 (2010), 1237.
doi: 10.3934/dcds.2010.28.1237. |
[9] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[10] |
W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb R^2$,, Duke Math. J., 71 (1993), 427.
doi: 10.1215/S0012-7094-93-07117-7. |
[11] |
S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.
doi: 10.1016/0025-5564(81)90055-9. |
[12] |
M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems,, J. Differential Equations, 140 (1997), 59.
doi: 10.1006/jdeq.1997.3316. |
[13] |
M. Chipot, I. Shafrir and G. Wolansky, Erratum: "On the solutions of Liouville systems'' [J. Differential Equations, 140 (1997), 59-105; MR1473855],, J. Differential Equations, 178 (2002).
|
[14] |
P. Debye and E. Huckel, Zur theorie der electrolyte,, Phys. Zft, 24 (1923), 305. Google Scholar |
[15] |
J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Letter, 64 (1990), 2230.
doi: 10.1103/PhysRevLett.64.2230. |
[16] |
R. Jackiw and E. J. Weinberg, Selfdual Chern Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.
doi: 10.1103/PhysRevLett.64.2234. |
[17] |
J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.
doi: 10.1002/cpa.20099. |
[18] |
J. Jost and G. Wang, Classification of solutions of a Toda system in $\mathbb R^ 2$,, Int. Math. Res. Not., 2002 (): 277.
doi: 10.1155/S1073792802105022. |
[19] |
J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality,, Comm. Pure Appl. Math., 54 (2001), 1289.
doi: 10.1002/cpa.10004. |
[20] |
J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds,, Ann. of Math. (2), 99 (1974), 14.
doi: 10.2307/1971012. |
[21] |
E. F. Keller and L. A. Segel, Traveling bands of Chemotactic Bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235.
doi: 10.1016/0022-5193(71)90051-8. |
[22] |
M. K.-H. Kiessling and J. L. Lebowitz, Dissipative stationary plasmas: Kinetic modeling, Bennett's pinch and generalizations,, Phys. Plasmas, 1 (1994), 1841.
doi: 10.1063/1.870639. |
[23] |
Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.
doi: 10.1007/s002200050536. |
[24] |
C.-S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 117.
doi: 10.1016/j.anihpc.2009.09.001. |
[25] |
C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field type,, Comm. Pure Appl. Math., 64 (2011), 556.
doi: 10.1002/cpa.20355. |
[26] |
M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices,, J. Math. Anal. Appl., 49 (1975), 215.
doi: 10.1016/0022-247X(75)90172-9. |
[27] |
M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory,, Calc. Var. and PDE, 9 (1999), 31.
doi: 10.1007/s005260050132. |
[28] |
J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 967.
doi: 10.1017/S0308210500001219. |
[29] |
I. Rubinstein, Electro Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990).
doi: 10.1137/1.9781611970814. |
[30] |
L. Zhang, Blow up solutions of some nonlinear elliptic equations involving exponential nonlinearities,, Comm. Math. Phys., 268 (2006), 105.
doi: 10.1007/s00220-006-0092-3. |
[31] |
L. Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data,, Commun. Contemp. Math., 11 (2009), 395.
doi: 10.1142/S0219199709003417. |
[1] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[2] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[3] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[4] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[5] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[6] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[7] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[8] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[9] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[10] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[11] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[12] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[13] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[14] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[15] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[16] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[17] |
Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[18] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[19] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[20] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]