\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$

Abstract / Introduction Related Papers Cited by
  • In the Heisenberg group framework, we study rigidity properties for stable solutions of $(-\Delta_\mathbb{H})^sv=f(v)$ in $\mathbb{H}$, $s\in(0,1)$. We obtain a Poincaré type inequality in connection with a degenerate elliptic equation in $\mathbb{R}^4_+$; through an extension (or ``lifting") procedure, this inequality will be then used for giving a criterion under which the level sets of the above solutions are minimal surfaces in $\mathbb{H}$, i.e. they have vanishing mean curvature.
    Mathematics Subject Classification: Primary: 35B08; Secondary: 47G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Arcozzi and F. Ferrari, Metric normal and distance function in the Heisenberg group, Math. Z., 256 (2007), 661-684.doi: 10.1007/s00209-006-0098-8.

    [2]

    N. Arcozzi and F. Ferrari, The Hessian of the distance from a surface in the Heisenberg group, Ann. Acad. Sci. Fenn. Math., 33 (2008), 35-63. Available from: http://mathstat.helsinki.fi/Annales/Vol33/vol33.html.

    [3]

    J. Bertoin, Lévy Processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996.

    [4]

    A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.

    [5]

    X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal., 238 (2006), 709-733.doi: 10.1016/j.jfa.2005.12.018.

    [6]

    X. Cabré and Y. Sire, Semilinear equations with fractional Laplacians, in preparation, 2007.

    [7]

    X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.doi: 10.1002/cpa.20093.

    [8]

    L. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.doi: 10.4171/JEMS/226.

    [9]

    L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.doi: 10.1007/s00222-007-0086-6.

    [10]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [11]

    L. Capogna, D. Danielli, S. Pauls and J. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, 259, Birkhäuser Verlag, Basel, 2007.

    [12]

    J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4 (2005), 129-177.

    [13]

    V. Chiadò and F. Serra Cassano, Relaxation of degenerate variational integrals, Nonlinear Anal., 22 (1994), 409-424.doi: 10.1016/0362-546X(94)90165-1.

    [14]

    R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004.

    [15]

    E. De Giorgi, Convergence problems for functionals and operators, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 131-188.

    [16]

    G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, translated from the French by C. W. John, Grundlehren Math. Wiss., 219, Springer-Verlag, Berlin-New York, 1976.

    [17]

    A. Farina, Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires, Habilitation à diriger des recherches, Paris VI, 2002.

    [18]

    A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.

    [19]

    F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, preprint, arXiv:1206.0885v4.

    [20]

    F. Ferrari and E. Valdinoci, A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems, Math. Ann., 343 (2009), 351-370.doi: 10.1007/s00208-008-0274-8.

    [21]

    G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.doi: 10.1007/BF02386204.

    [22]

    G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.

    [23]

    B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 10 (1983), 523-541.

    [24]

    B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 14 (1987), 527-568.

    [25]

    N. Garofalo, D. Danielli and D.-M. Nhieu, Notion of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341.doi: 10.4310/CAG.2003.v11.n2.a5.

    [26]

    E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math., 80, Birkhäuser Verlag, Basel, 1984.

    [27]

    G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8 (1992), 367-439.doi: 10.4171/RMI/129.

    [28]

    S. Pauls, Minimal surfaces in the Heisenberg group, Geom. Dedicata, 104 (2004), 201-231.doi: 10.1023/B:GEOM.0000022861.52942.98.

    [29]

    Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.doi: 10.1016/j.jfa.2009.01.020.

    [30]

    P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.

    [31]

    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return