June  2014, 34(6): 2657-2667. doi: 10.3934/dcds.2014.34.2657

On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Received  February 2013 Published  December 2013

We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain $\Omega$. We assume that $\Omega$ is symmetric about a hyperplane $H$ and convex in the direction perpendicular to $H$. Each nonnegative solution of such a problem is symmetric about $H$ and, if strictly positive, it is also decreasing in the direction orthogonal to $H$ on each side of $H$. The latter is of course not true if the solution has a nontrivial nodal set. In this paper we prove that for a class of domains, including for example all domains which are convex (in all directions), there can be at most one nonnegative solution with a nontrivial nodal set. For general domains, there are at most finitely many such solutions.
Citation: Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657
References:
[1]

H. Berestycki, Qualitative properties of positive solutions of elliptic equations,, in Partial differential equations (Praha, (1998), 34.   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

A. Castro and R. Shivaji, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric,, Comm. Partial Differential Equations, 14 (1989), 1091.  doi: 10.1080/03605308908820645.  Google Scholar

[5]

X.-Y. Chen, On the scaling limits at zeros of solutions of parabolic equations,, J. Differential Equations, 147 (1998), 355.  doi: 10.1006/jdeq.1997.3329.  Google Scholar

[6]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. European Math. Soc., 9 (2007), 317.  doi: 10.4171/JEMS/81.  Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 187.   Google Scholar

[8]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications,, Series in Partial Differential Equations and Applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar

[9]

J. Földes, On symmetry properties of parabolic equations in bounded domains,, J. Differential Equations, 250 (2011), 4236.  doi: 10.1016/j.jde.2011.03.018.  Google Scholar

[10]

, J. Földes and P. Poláčik,, Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains, ().   Google Scholar

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).   Google Scholar

[14]

P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 573.  doi: 10.1017/S030821050002878X.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators,, Reprint of the 1994 edition, (1994).   Google Scholar

[16]

B. Kawohl, Symmetrization - or how to prove symmetry of solutions to a PDE,, in Partial Differential Equations (Praha, (1998), 214.   Google Scholar

[17]

F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 44 (1991), 287.  doi: 10.1002/cpa.3160440303.  Google Scholar

[18]

C. Miranda, Partial Differential Equations of Elliptic Type,, Second revised edition, (1970).   Google Scholar

[19]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, in Stationary Partial Differential Equations, (2004), 157.  doi: 10.1016/S1874-5733(04)80005-6.  Google Scholar

[20]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (eds. W.-Y. Lin Y. Du and H. Ishii), (2009), 170.  doi: 10.1142/9789812834744_0009.  Google Scholar

[21]

________, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin,, Comm. Partial Differential Equations, 36 (2011), 657.  doi: 10.1080/03605302.2010.513026.  Google Scholar

[22]

________, On symmetry of nonnegative solutions of elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 29 (2012), 1.  doi: 10.1016/j.anihpc.2011.03.001.  Google Scholar

[23]

________, Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains,, J. Funct. Anal., 262 (2012), 4458.  doi: 10.1016/j.jfa.2012.02.022.  Google Scholar

[24]

P. Poláčik, A discussion of nonnegative solutions of elliptic equations on symmetric domains,, to appear in Proceedings of the RIMS Conference on Partial Differential Equations, (2013).   Google Scholar

[25]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proc. AMS., ().   Google Scholar

[26]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

show all references

References:
[1]

H. Berestycki, Qualitative properties of positive solutions of elliptic equations,, in Partial differential equations (Praha, (1998), 34.   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

A. Castro and R. Shivaji, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric,, Comm. Partial Differential Equations, 14 (1989), 1091.  doi: 10.1080/03605308908820645.  Google Scholar

[5]

X.-Y. Chen, On the scaling limits at zeros of solutions of parabolic equations,, J. Differential Equations, 147 (1998), 355.  doi: 10.1006/jdeq.1997.3329.  Google Scholar

[6]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. European Math. Soc., 9 (2007), 317.  doi: 10.4171/JEMS/81.  Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 187.   Google Scholar

[8]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications,, Series in Partial Differential Equations and Applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar

[9]

J. Földes, On symmetry properties of parabolic equations in bounded domains,, J. Differential Equations, 250 (2011), 4236.  doi: 10.1016/j.jde.2011.03.018.  Google Scholar

[10]

, J. Földes and P. Poláčik,, Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains, ().   Google Scholar

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).   Google Scholar

[14]

P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 573.  doi: 10.1017/S030821050002878X.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators,, Reprint of the 1994 edition, (1994).   Google Scholar

[16]

B. Kawohl, Symmetrization - or how to prove symmetry of solutions to a PDE,, in Partial Differential Equations (Praha, (1998), 214.   Google Scholar

[17]

F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 44 (1991), 287.  doi: 10.1002/cpa.3160440303.  Google Scholar

[18]

C. Miranda, Partial Differential Equations of Elliptic Type,, Second revised edition, (1970).   Google Scholar

[19]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, in Stationary Partial Differential Equations, (2004), 157.  doi: 10.1016/S1874-5733(04)80005-6.  Google Scholar

[20]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (eds. W.-Y. Lin Y. Du and H. Ishii), (2009), 170.  doi: 10.1142/9789812834744_0009.  Google Scholar

[21]

________, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin,, Comm. Partial Differential Equations, 36 (2011), 657.  doi: 10.1080/03605302.2010.513026.  Google Scholar

[22]

________, On symmetry of nonnegative solutions of elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 29 (2012), 1.  doi: 10.1016/j.anihpc.2011.03.001.  Google Scholar

[23]

________, Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains,, J. Funct. Anal., 262 (2012), 4458.  doi: 10.1016/j.jfa.2012.02.022.  Google Scholar

[24]

P. Poláčik, A discussion of nonnegative solutions of elliptic equations on symmetric domains,, to appear in Proceedings of the RIMS Conference on Partial Differential Equations, (2013).   Google Scholar

[25]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proc. AMS., ().   Google Scholar

[26]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

[1]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

[2]

Claudianor O. Alves, J. V. Gonçalves, Olimpio Hiroshi Miyagaki. Remarks on multiplicity of positive solutions of nonlinear elliptic equations in $IR^N$ with critical growth. Conference Publications, 1998, 1998 (Special) : 51-57. doi: 10.3934/proc.1998.1998.51

[3]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[4]

Matteo Novaga, Diego Pallara, Yannick Sire. A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 815-831. doi: 10.3934/dcdss.2016030

[5]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[6]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[7]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[8]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure & Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[9]

Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028

[10]

Monica Lazzo. Existence and multiplicity results for a class of nonlinear elliptic problems in $\mathbb(R)^N$. Conference Publications, 2003, 2003 (Special) : 526-535. doi: 10.3934/proc.2003.2003.526

[11]

Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785

[12]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[13]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[14]

Jinlong Bai, Desheng Li, Chunqiu Li. A note on multiplicity of solutions near resonance of semilinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3351-3365. doi: 10.3934/cpaa.2019151

[15]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[16]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[17]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[18]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[19]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[20]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]