June  2014, 34(6): 2657-2667. doi: 10.3934/dcds.2014.34.2657

On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Received  February 2013 Published  December 2013

We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain $\Omega$. We assume that $\Omega$ is symmetric about a hyperplane $H$ and convex in the direction perpendicular to $H$. Each nonnegative solution of such a problem is symmetric about $H$ and, if strictly positive, it is also decreasing in the direction orthogonal to $H$ on each side of $H$. The latter is of course not true if the solution has a nontrivial nodal set. In this paper we prove that for a class of domains, including for example all domains which are convex (in all directions), there can be at most one nonnegative solution with a nontrivial nodal set. For general domains, there are at most finitely many such solutions.
Citation: Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657
References:
[1]

H. Berestycki, Qualitative properties of positive solutions of elliptic equations,, in Partial differential equations (Praha, (1998), 34.   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

A. Castro and R. Shivaji, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric,, Comm. Partial Differential Equations, 14 (1989), 1091.  doi: 10.1080/03605308908820645.  Google Scholar

[5]

X.-Y. Chen, On the scaling limits at zeros of solutions of parabolic equations,, J. Differential Equations, 147 (1998), 355.  doi: 10.1006/jdeq.1997.3329.  Google Scholar

[6]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. European Math. Soc., 9 (2007), 317.  doi: 10.4171/JEMS/81.  Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 187.   Google Scholar

[8]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications,, Series in Partial Differential Equations and Applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar

[9]

J. Földes, On symmetry properties of parabolic equations in bounded domains,, J. Differential Equations, 250 (2011), 4236.  doi: 10.1016/j.jde.2011.03.018.  Google Scholar

[10]

, J. Földes and P. Poláčik,, Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains, ().   Google Scholar

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).   Google Scholar

[14]

P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 573.  doi: 10.1017/S030821050002878X.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators,, Reprint of the 1994 edition, (1994).   Google Scholar

[16]

B. Kawohl, Symmetrization - or how to prove symmetry of solutions to a PDE,, in Partial Differential Equations (Praha, (1998), 214.   Google Scholar

[17]

F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 44 (1991), 287.  doi: 10.1002/cpa.3160440303.  Google Scholar

[18]

C. Miranda, Partial Differential Equations of Elliptic Type,, Second revised edition, (1970).   Google Scholar

[19]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, in Stationary Partial Differential Equations, (2004), 157.  doi: 10.1016/S1874-5733(04)80005-6.  Google Scholar

[20]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (eds. W.-Y. Lin Y. Du and H. Ishii), (2009), 170.  doi: 10.1142/9789812834744_0009.  Google Scholar

[21]

________, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin,, Comm. Partial Differential Equations, 36 (2011), 657.  doi: 10.1080/03605302.2010.513026.  Google Scholar

[22]

________, On symmetry of nonnegative solutions of elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 29 (2012), 1.  doi: 10.1016/j.anihpc.2011.03.001.  Google Scholar

[23]

________, Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains,, J. Funct. Anal., 262 (2012), 4458.  doi: 10.1016/j.jfa.2012.02.022.  Google Scholar

[24]

P. Poláčik, A discussion of nonnegative solutions of elliptic equations on symmetric domains,, to appear in Proceedings of the RIMS Conference on Partial Differential Equations, (2013).   Google Scholar

[25]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proc. AMS., ().   Google Scholar

[26]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

show all references

References:
[1]

H. Berestycki, Qualitative properties of positive solutions of elliptic equations,, in Partial differential equations (Praha, (1998), 34.   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

A. Castro and R. Shivaji, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric,, Comm. Partial Differential Equations, 14 (1989), 1091.  doi: 10.1080/03605308908820645.  Google Scholar

[5]

X.-Y. Chen, On the scaling limits at zeros of solutions of parabolic equations,, J. Differential Equations, 147 (1998), 355.  doi: 10.1006/jdeq.1997.3329.  Google Scholar

[6]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. European Math. Soc., 9 (2007), 317.  doi: 10.4171/JEMS/81.  Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 187.   Google Scholar

[8]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1. Maximum Principles and Applications,, Series in Partial Differential Equations and Applications, (2006).  doi: 10.1142/9789812774446.  Google Scholar

[9]

J. Földes, On symmetry properties of parabolic equations in bounded domains,, J. Differential Equations, 250 (2011), 4236.  doi: 10.1016/j.jde.2011.03.018.  Google Scholar

[10]

, J. Földes and P. Poláčik,, Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains, ().   Google Scholar

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge Tracts in Mathematics, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).   Google Scholar

[14]

P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 573.  doi: 10.1017/S030821050002878X.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators,, Reprint of the 1994 edition, (1994).   Google Scholar

[16]

B. Kawohl, Symmetrization - or how to prove symmetry of solutions to a PDE,, in Partial Differential Equations (Praha, (1998), 214.   Google Scholar

[17]

F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 44 (1991), 287.  doi: 10.1002/cpa.3160440303.  Google Scholar

[18]

C. Miranda, Partial Differential Equations of Elliptic Type,, Second revised edition, (1970).   Google Scholar

[19]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, in Stationary Partial Differential Equations, (2004), 157.  doi: 10.1016/S1874-5733(04)80005-6.  Google Scholar

[20]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (eds. W.-Y. Lin Y. Du and H. Ishii), (2009), 170.  doi: 10.1142/9789812834744_0009.  Google Scholar

[21]

________, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin,, Comm. Partial Differential Equations, 36 (2011), 657.  doi: 10.1080/03605302.2010.513026.  Google Scholar

[22]

________, On symmetry of nonnegative solutions of elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 29 (2012), 1.  doi: 10.1016/j.anihpc.2011.03.001.  Google Scholar

[23]

________, Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains,, J. Funct. Anal., 262 (2012), 4458.  doi: 10.1016/j.jfa.2012.02.022.  Google Scholar

[24]

P. Poláčik, A discussion of nonnegative solutions of elliptic equations on symmetric domains,, to appear in Proceedings of the RIMS Conference on Partial Differential Equations, (2013).   Google Scholar

[25]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proc. AMS., ().   Google Scholar

[26]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[8]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[13]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[19]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]