June  2014, 34(6): 2669-2691. doi: 10.3934/dcds.2014.34.2669

Uniform Hölder regularity with small exponent in competition-fractional diffusion systems

1. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino

2. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano, Italy

Received  March 2013 Revised  June 2013 Published  December 2013

For a class of competition-diffusion nonlinear systems involving the $s$-power of the laplacian, $s\in(0,1)$, of the form \[ (-\Delta)^{s} u_i=f_i(u_i) - \beta u_i\sum_{j\neq i}a_{ij}u_j^2,\qquad i=1,\dots,k, \] we prove that $L^\infty$ boundedness implies $\mathcal{C}^{0,\alpha}$ boundedness for $\alpha>0$ sufficiently small, uniformly as $\beta\to +\infty$. This extends to the case $s\neq1/2$ part of the results obtained by the authors in the previous paper [arXiv: 1211.6087v1].
Citation: Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669
References:
[1]

L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems,, J. Fixed Point Theory Appl., 5 (2009), 319.  doi: 10.1007/s11784-009-0110-0.  Google Scholar

[2]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, J. Amer. Math. Soc., 21 (2008), 847.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[3]

L. A. Caffarelli and J.-M. Roquejoffre, Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames,, Arch. Ration. Mech. Anal., 183 (2007), 457.  doi: 10.1007/s00205-006-0013-9.  Google Scholar

[4]

L. A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151.  doi: 10.4171/JEMS/226.  Google Scholar

[5]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues,, J. Funct. Anal., 198 (2003), 160.  doi: 10.1016/S0022-1236(02)00105-2.  Google Scholar

[8]

M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems,, Adv. Math., 195 (2005), 524.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[9]

E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species,, J. Differential Equations, 251 (2011), 2737.  doi: 10.1016/j.jde.2011.06.015.  Google Scholar

[10]

________, Dynamics of strongly competing systems with many species,, Trans. Amer. Math. Soc., 364 (2012), 961.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[11]

_______, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture,, J. Funct. Anal., 262 (2012), 1087.  doi: 10.1016/j.jfa.2011.10.013.  Google Scholar

[12]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[13]

N. S. Landkof, Foundations of modern potential theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[14]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.  doi: 10.1002/cpa.20309.  Google Scholar

[15]

B. Opic and A. Kufner, Hardy-type inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar

[16]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary,, J. Math. Pures Appl., ().  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[17]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[18]

H. Tavares and S. Terracini, Regularity of the nodal set of segregated critical configurations under a weak reflection law,, Calc. Var. Partial Differential Equations, 45 (2012), 273.  doi: 10.1007/s00526-011-0458-z.  Google Scholar

[19]

S. Terracini, G. Verzini and A. Zilio, Uniform Hölder bounds for strongly competing systems involving the square root of the Laplacian,, preprint, ().   Google Scholar

[20]

K. Wang and Z. Zhang, Some new results in competing systems with many species,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 739.  doi: 10.1016/j.anihpc.2009.11.004.  Google Scholar

[21]

J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition,, Nonlinearity, 21 (2008), 305.  doi: 10.1088/0951-7715/21/2/006.  Google Scholar

show all references

References:
[1]

L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems,, J. Fixed Point Theory Appl., 5 (2009), 319.  doi: 10.1007/s11784-009-0110-0.  Google Scholar

[2]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, J. Amer. Math. Soc., 21 (2008), 847.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[3]

L. A. Caffarelli and J.-M. Roquejoffre, Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames,, Arch. Ration. Mech. Anal., 183 (2007), 457.  doi: 10.1007/s00205-006-0013-9.  Google Scholar

[4]

L. A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151.  doi: 10.4171/JEMS/226.  Google Scholar

[5]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues,, J. Funct. Anal., 198 (2003), 160.  doi: 10.1016/S0022-1236(02)00105-2.  Google Scholar

[8]

M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems,, Adv. Math., 195 (2005), 524.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[9]

E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species,, J. Differential Equations, 251 (2011), 2737.  doi: 10.1016/j.jde.2011.06.015.  Google Scholar

[10]

________, Dynamics of strongly competing systems with many species,, Trans. Amer. Math. Soc., 364 (2012), 961.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[11]

_______, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture,, J. Funct. Anal., 262 (2012), 1087.  doi: 10.1016/j.jfa.2011.10.013.  Google Scholar

[12]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[13]

N. S. Landkof, Foundations of modern potential theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[14]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.  doi: 10.1002/cpa.20309.  Google Scholar

[15]

B. Opic and A. Kufner, Hardy-type inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar

[16]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary,, J. Math. Pures Appl., ().  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[17]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[18]

H. Tavares and S. Terracini, Regularity of the nodal set of segregated critical configurations under a weak reflection law,, Calc. Var. Partial Differential Equations, 45 (2012), 273.  doi: 10.1007/s00526-011-0458-z.  Google Scholar

[19]

S. Terracini, G. Verzini and A. Zilio, Uniform Hölder bounds for strongly competing systems involving the square root of the Laplacian,, preprint, ().   Google Scholar

[20]

K. Wang and Z. Zhang, Some new results in competing systems with many species,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 739.  doi: 10.1016/j.anihpc.2009.11.004.  Google Scholar

[21]

J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition,, Nonlinearity, 21 (2008), 305.  doi: 10.1088/0951-7715/21/2/006.  Google Scholar

[1]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[2]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[20]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (15)

[Back to Top]