July  2014, 34(7): 2693-2701. doi: 10.3934/dcds.2014.34.2693

A note on the Chern-Simons-Dirac equations in the Coulomb gauge

1. 

Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JE, United Kingdom

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3. 

Department of Mathematics, Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan

Received  June 2013 Revised  October 2013 Published  December 2013

We prove that the Chern-Simons-Dirac equations in the Coulomb gauge are locally well-posed from initial data in $H^s$ with $s>\frac{1}{4}$. To study nonlinear Wave or Dirac equations at this regularity generally requires the presence of null structure. The novel point here is that we make no use of the null structure of the system. Instead we exploit the additional elliptic structure in the Coulomb gauge together with the bilinear Strichartz estimates of Klainerman-Tataru.
Citation: Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693
References:
[1]

N. Bournaveas, Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge,, Electron. J. Differential Equations, 2009 ().   Google Scholar

[2]

N. Bournaveas, T. Candy and S. Machihara, Local and global well-posedness for the Chern-Simons-Dirac system in one dimension,, Differential Integral Equations, 25 (2012), 699.   Google Scholar

[3]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants,, Ann. of Math. (2), 99 (1974), 48.  doi: 10.2307/1971013.  Google Scholar

[4]

Y. M. Cho, J. W. Kim and D. H. Park, Fermionic vortex solutions in Chern-Simons electrodynamics,, Phys. Rev. D (3), 45 (1992), 3802.  doi: 10.1103/PhysRevD.45.3802.  Google Scholar

[5]

S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories,, Physical Review Letters, 48 (1982), 975.  doi: 10.1103/PhysRevLett.48.975.  Google Scholar

[6]

H. Huh, Cauchy problem for the fermion field equation coupled with the Chern-Simons gauge,, Lett. Math. Phys., 79 (2007), 75.  doi: 10.1007/s11005-006-0118-y.  Google Scholar

[7]

_______, Local and global solutions of the Chern-Simons-Higgs system,, J. Funct. Anal., 242 (2007), 526.  doi: 10.1016/j.jfa.2006.09.009.  Google Scholar

[8]

_______, Global solutions and asymptotic behaviors of the Chern-Simons-Dirac equations in $\mathbbR^{1+1}$,, J. Math. Anal. Appl., 366 (2010), 706.  doi: 10.1016/j.jmaa.2009.12.055.  Google Scholar

[9]

_______, Towards the Chern-Simons-Higgs equation with finite energy,, Discrete Contin. Dyn. Syst., 30 (2011), 1145.  doi: 10.3934/dcds.2011.30.1145.  Google Scholar

[10]

H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge,, preprint, (2012).   Google Scholar

[11]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations,, Commun. Contemp. Math., 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[12]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$,, J. Amer. Math. Soc., 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[13]

H. Lindblad, Counterexamples to local existence for semi-linear wave equations,, Amer. J. Math., 118 (1996), 1.  doi: 10.1353/ajm.1996.0002.  Google Scholar

[14]

B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger,, preprint, (2012).  doi: 10.1093/imrn/rnt161.  Google Scholar

[15]

A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories,, Phys. Rev. B, 44 (1991), 5246.  doi: 10.1103/PhysRevB.44.5246.  Google Scholar

[16]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy,, Discrete Contin. Dyn. Syst., 33 (2013), 2531.  doi: 10.3934/dcds.2013.33.2531.  Google Scholar

show all references

References:
[1]

N. Bournaveas, Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge,, Electron. J. Differential Equations, 2009 ().   Google Scholar

[2]

N. Bournaveas, T. Candy and S. Machihara, Local and global well-posedness for the Chern-Simons-Dirac system in one dimension,, Differential Integral Equations, 25 (2012), 699.   Google Scholar

[3]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants,, Ann. of Math. (2), 99 (1974), 48.  doi: 10.2307/1971013.  Google Scholar

[4]

Y. M. Cho, J. W. Kim and D. H. Park, Fermionic vortex solutions in Chern-Simons electrodynamics,, Phys. Rev. D (3), 45 (1992), 3802.  doi: 10.1103/PhysRevD.45.3802.  Google Scholar

[5]

S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories,, Physical Review Letters, 48 (1982), 975.  doi: 10.1103/PhysRevLett.48.975.  Google Scholar

[6]

H. Huh, Cauchy problem for the fermion field equation coupled with the Chern-Simons gauge,, Lett. Math. Phys., 79 (2007), 75.  doi: 10.1007/s11005-006-0118-y.  Google Scholar

[7]

_______, Local and global solutions of the Chern-Simons-Higgs system,, J. Funct. Anal., 242 (2007), 526.  doi: 10.1016/j.jfa.2006.09.009.  Google Scholar

[8]

_______, Global solutions and asymptotic behaviors of the Chern-Simons-Dirac equations in $\mathbbR^{1+1}$,, J. Math. Anal. Appl., 366 (2010), 706.  doi: 10.1016/j.jmaa.2009.12.055.  Google Scholar

[9]

_______, Towards the Chern-Simons-Higgs equation with finite energy,, Discrete Contin. Dyn. Syst., 30 (2011), 1145.  doi: 10.3934/dcds.2011.30.1145.  Google Scholar

[10]

H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge,, preprint, (2012).   Google Scholar

[11]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations,, Commun. Contemp. Math., 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[12]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$,, J. Amer. Math. Soc., 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[13]

H. Lindblad, Counterexamples to local existence for semi-linear wave equations,, Amer. J. Math., 118 (1996), 1.  doi: 10.1353/ajm.1996.0002.  Google Scholar

[14]

B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger,, preprint, (2012).  doi: 10.1093/imrn/rnt161.  Google Scholar

[15]

A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories,, Phys. Rev. B, 44 (1991), 5246.  doi: 10.1103/PhysRevB.44.5246.  Google Scholar

[16]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy,, Discrete Contin. Dyn. Syst., 33 (2013), 2531.  doi: 10.3934/dcds.2013.33.2531.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

[Back to Top]