Advanced Search
Article Contents
Article Contents

Enveloping semigroups of systems of order d

Abstract Related Papers Cited by
  • In this paper we study the Ellis semigroup of a $d$-step nilsystem and the inverse limit of such systems. By using the machinery of cubes developed by Host, Kra and Maass, we prove that such a system has a $d$-step topologically nilpotent enveloping semigroup. In the case $d=2$, we prove that these notions are equivalent, extending a previous result by Glasner.
    Mathematics Subject Classification: Primary: 37B05, 37B99.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, Notas de Matemática [Mathematical Notes], 122, North-Holland Publishing Co., Amsterdam, 1988.


    H. Becker and A. S. Kechris, The Descriptive set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, 232, Cambridge Univ. Press, Cambridge, 1996.doi: 10.1017/CBO9780511735264.


    R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, Inc., New York, 1969.


    E. Glasner, Minimal nil-transformations of class two, Israel J. Math., 81 (1993), 31-51.doi: 10.1007/BF02761296.


    E. Glasner, Enveloping semigroups in topological dynamics, Topology Appl., 154 (2007), 2344-2363.doi: 10.1016/j.topol.2007.03.009.


    B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2), 171 (2010), 1753-1850.doi: 10.4007/annals.2010.171.1753.


    B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), 398-488.doi: 10.4007/annals.2005.161.397.


    B. Host, B. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. Math., 224 (2010), 103-129.doi: 10.1016/j.aim.2009.11.009.


    B. Host and A. Maass, Nilsystèmes d'ordre deux et parallélépipèdes, (French) [Two step nilsystems and parallelepipeds], Bull. Soc. Math. France, 135 (2007), 367-405.


    A. Mal'cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk SSSR. Ser Mat., 13 (1949), 9-32.


    R. Pikuła, Enveloping semigroups of unipotent affine transformations of the torus, Ergodic Theory Dynam. Systems, 30 (2010), 1543-1559.doi: 10.1017/S0143385709000261.


    R. J. Sacker and G. R. Sell, Finite extensions of minimal transformation groups, Trans. Amer. Math. Soc., 190 (1974), 325-334.doi: 10.1090/S0002-9947-1974-0350715-8.


    S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math., 231 (2012), 1786-1817.doi: 10.1016/j.aim.2012.07.012.

  • 加载中

Article Metrics

HTML views() PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint