July  2014, 34(7): 2729-2740. doi: 10.3934/dcds.2014.34.2729

Enveloping semigroups of systems of order d

1. 

Centro de Modelamiento Matemático and Departamento de Ingeniería Matemática, Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile

Received  July 2013 Revised  October 2013 Published  December 2013

In this paper we study the Ellis semigroup of a $d$-step nilsystem and the inverse limit of such systems. By using the machinery of cubes developed by Host, Kra and Maass, we prove that such a system has a $d$-step topologically nilpotent enveloping semigroup. In the case $d=2$, we prove that these notions are equivalent, extending a previous result by Glasner.
Citation: Sebastián Donoso. Enveloping semigroups of systems of order d. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2729-2740. doi: 10.3934/dcds.2014.34.2729
References:
[1]

J. Auslander, Minimal Flows and their Extensions,, North-Holland Mathematics Studies, (1988).   Google Scholar

[2]

H. Becker and A. S. Kechris, The Descriptive set Theory of Polish Group Actions,, London Mathematical Society Lecture Note Series, (1996).  doi: 10.1017/CBO9780511735264.  Google Scholar

[3]

R. Ellis, Lectures on Topological Dynamics,, W. A. Benjamin, (1969).   Google Scholar

[4]

E. Glasner, Minimal nil-transformations of class two,, Israel J. Math., 81 (1993), 31.  doi: 10.1007/BF02761296.  Google Scholar

[5]

E. Glasner, Enveloping semigroups in topological dynamics,, Topology Appl., 154 (2007), 2344.  doi: 10.1016/j.topol.2007.03.009.  Google Scholar

[6]

B. Green and T. Tao, Linear equations in primes,, Ann. of Math. (2), 171 (2010), 1753.  doi: 10.4007/annals.2010.171.1753.  Google Scholar

[7]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math. (2), 161 (2005), 398.  doi: 10.4007/annals.2005.161.397.  Google Scholar

[8]

B. Host, B. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems,, Adv. Math., 224 (2010), 103.  doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[9]

B. Host and A. Maass, Nilsystèmes d'ordre deux et parallélépipèdes,, (French) [Two step nilsystems and parallelepipeds], 135 (2007), 367.   Google Scholar

[10]

A. Mal'cev, On a class of homogeneous spaces,, Izvestiya Akad. Nauk SSSR. Ser Mat., 13 (1949), 9.   Google Scholar

[11]

R. Pikuła, Enveloping semigroups of unipotent affine transformations of the torus,, Ergodic Theory Dynam. Systems, 30 (2010), 1543.  doi: 10.1017/S0143385709000261.  Google Scholar

[12]

R. J. Sacker and G. R. Sell, Finite extensions of minimal transformation groups,, Trans. Amer. Math. Soc., 190 (1974), 325.  doi: 10.1090/S0002-9947-1974-0350715-8.  Google Scholar

[13]

S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence,, Adv. Math., 231 (2012), 1786.  doi: 10.1016/j.aim.2012.07.012.  Google Scholar

show all references

References:
[1]

J. Auslander, Minimal Flows and their Extensions,, North-Holland Mathematics Studies, (1988).   Google Scholar

[2]

H. Becker and A. S. Kechris, The Descriptive set Theory of Polish Group Actions,, London Mathematical Society Lecture Note Series, (1996).  doi: 10.1017/CBO9780511735264.  Google Scholar

[3]

R. Ellis, Lectures on Topological Dynamics,, W. A. Benjamin, (1969).   Google Scholar

[4]

E. Glasner, Minimal nil-transformations of class two,, Israel J. Math., 81 (1993), 31.  doi: 10.1007/BF02761296.  Google Scholar

[5]

E. Glasner, Enveloping semigroups in topological dynamics,, Topology Appl., 154 (2007), 2344.  doi: 10.1016/j.topol.2007.03.009.  Google Scholar

[6]

B. Green and T. Tao, Linear equations in primes,, Ann. of Math. (2), 171 (2010), 1753.  doi: 10.4007/annals.2010.171.1753.  Google Scholar

[7]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math. (2), 161 (2005), 398.  doi: 10.4007/annals.2005.161.397.  Google Scholar

[8]

B. Host, B. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems,, Adv. Math., 224 (2010), 103.  doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[9]

B. Host and A. Maass, Nilsystèmes d'ordre deux et parallélépipèdes,, (French) [Two step nilsystems and parallelepipeds], 135 (2007), 367.   Google Scholar

[10]

A. Mal'cev, On a class of homogeneous spaces,, Izvestiya Akad. Nauk SSSR. Ser Mat., 13 (1949), 9.   Google Scholar

[11]

R. Pikuła, Enveloping semigroups of unipotent affine transformations of the torus,, Ergodic Theory Dynam. Systems, 30 (2010), 1543.  doi: 10.1017/S0143385709000261.  Google Scholar

[12]

R. J. Sacker and G. R. Sell, Finite extensions of minimal transformation groups,, Trans. Amer. Math. Soc., 190 (1974), 325.  doi: 10.1090/S0002-9947-1974-0350715-8.  Google Scholar

[13]

S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence,, Adv. Math., 231 (2012), 1786.  doi: 10.1016/j.aim.2012.07.012.  Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[17]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]