July  2014, 34(7): 2779-2793. doi: 10.3934/dcds.2014.34.2779

On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties

1. 

Dipartimento di Matematica dell'Università di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States, United States

Received  August 2013 Revised  October 2013 Published  December 2013

We characterize $p-$harmonic functions in the Heisenberg group in terms of an asymptotic mean value property, where $1 < p <\infty$, following the scheme described in [16] for the Euclidean case. The new tool that allows us to consider the subelliptic case is a geometric lemma, Lemma 3.2 below, that relates the directions of the points of maxima and minima of a function on a small subelliptic ball with the unit horizontal gradient of that function.
Citation: Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779
References:
[1]

N. Arcozzi and F. Ferrari, Metric normal and distance function in the Heisenberg group,, Math. Z., 256 (2007), 661. doi: 10.1007/s00209-006-0098-8. Google Scholar

[2]

N. Arcozzi and F. Ferrari, The Hessian of the distance from a surface in the Heisenberg group,, Ann. Acad. Sci. Fenn. Math., 33 (2008), 35. Google Scholar

[3]

N. Arcozzi, F. Ferrari and F. Montefalcone, CC-distance and metric normal of smooth hypersurfaces in sub-Riemannian two-step Carnot groups,, preprint, (). Google Scholar

[4]

T. Bieske, Equivalence of weak and viscosity solutions to the $p$-Laplace equation in the Heisenberg group,, Ann. Acad. Sci. Fenn. Math., 31 (2006), 363. Google Scholar

[5]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians,, Springer Monographs in Mathematics, (2007). Google Scholar

[6]

J.-M. Bony, Principe du maximum et inégalité de Harnack pour les opérateurs elliptiques dégénérés,, in 1969 Séminaire de Théorie du Potentiel, (1967). Google Scholar

[7]

J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,, Ann. Inst. Fourier (Grenoble), 19 (1969), 277. doi: 10.5802/aif.319. Google Scholar

[8]

L. Capogna and G. Citti, Generalized mean curvature flow in Carnot groups,, Comm. Partial Differential Equations, 34 (2009), 937. doi: 10.1080/03605300903050257. Google Scholar

[9]

L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem,, Progress in Mathematics, (2007). Google Scholar

[10]

B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group,, Math. Ann., 321 (2001), 479. doi: 10.1007/s002080100228. Google Scholar

[11]

F. Ferrari, Q. Liu and J. J. Manfredi, On the horizontal mean curvature Flow for axisymmetric surfaces in the Heisenberg group,, to appear in Commun. Contemp. Math., (). doi: 10.1142/S0219199713500272. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998). Google Scholar

[13]

C. Gutiérrez and E. Lanconelli, Classical viscosity and average solutions for PDE's with nonnegative characteristic form,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15 (2004), 17. Google Scholar

[14]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation,, SIAM J. Math. Anal., 33 (2001), 699. doi: 10.1137/S0036141000372179. Google Scholar

[15]

H. Liu and X. Yang, Asymptotic mean value formula for sub-$p$-harmonic functions on the Heisenberg group,, J. Funct. Anal., 264 (2013), 2177. doi: 10.1016/j.jfa.2013.02.009. Google Scholar

[16]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, Proc. Amer. Math. Soc., 138 (2010), 881. doi: 10.1090/S0002-9939-09-10183-1. Google Scholar

[17]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167. doi: 10.1090/S0894-0347-08-00606-1. Google Scholar

[18]

C. Pucci and G. Talenti, Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations,, Advances in Math., 19 (1976), 48. doi: 10.1016/0001-8708(76)90022-0. Google Scholar

show all references

References:
[1]

N. Arcozzi and F. Ferrari, Metric normal and distance function in the Heisenberg group,, Math. Z., 256 (2007), 661. doi: 10.1007/s00209-006-0098-8. Google Scholar

[2]

N. Arcozzi and F. Ferrari, The Hessian of the distance from a surface in the Heisenberg group,, Ann. Acad. Sci. Fenn. Math., 33 (2008), 35. Google Scholar

[3]

N. Arcozzi, F. Ferrari and F. Montefalcone, CC-distance and metric normal of smooth hypersurfaces in sub-Riemannian two-step Carnot groups,, preprint, (). Google Scholar

[4]

T. Bieske, Equivalence of weak and viscosity solutions to the $p$-Laplace equation in the Heisenberg group,, Ann. Acad. Sci. Fenn. Math., 31 (2006), 363. Google Scholar

[5]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians,, Springer Monographs in Mathematics, (2007). Google Scholar

[6]

J.-M. Bony, Principe du maximum et inégalité de Harnack pour les opérateurs elliptiques dégénérés,, in 1969 Séminaire de Théorie du Potentiel, (1967). Google Scholar

[7]

J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,, Ann. Inst. Fourier (Grenoble), 19 (1969), 277. doi: 10.5802/aif.319. Google Scholar

[8]

L. Capogna and G. Citti, Generalized mean curvature flow in Carnot groups,, Comm. Partial Differential Equations, 34 (2009), 937. doi: 10.1080/03605300903050257. Google Scholar

[9]

L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem,, Progress in Mathematics, (2007). Google Scholar

[10]

B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group,, Math. Ann., 321 (2001), 479. doi: 10.1007/s002080100228. Google Scholar

[11]

F. Ferrari, Q. Liu and J. J. Manfredi, On the horizontal mean curvature Flow for axisymmetric surfaces in the Heisenberg group,, to appear in Commun. Contemp. Math., (). doi: 10.1142/S0219199713500272. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998). Google Scholar

[13]

C. Gutiérrez and E. Lanconelli, Classical viscosity and average solutions for PDE's with nonnegative characteristic form,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15 (2004), 17. Google Scholar

[14]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation,, SIAM J. Math. Anal., 33 (2001), 699. doi: 10.1137/S0036141000372179. Google Scholar

[15]

H. Liu and X. Yang, Asymptotic mean value formula for sub-$p$-harmonic functions on the Heisenberg group,, J. Funct. Anal., 264 (2013), 2177. doi: 10.1016/j.jfa.2013.02.009. Google Scholar

[16]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions,, Proc. Amer. Math. Soc., 138 (2010), 881. doi: 10.1090/S0002-9939-09-10183-1. Google Scholar

[17]

Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167. doi: 10.1090/S0894-0347-08-00606-1. Google Scholar

[18]

C. Pucci and G. Talenti, Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations,, Advances in Math., 19 (1976), 48. doi: 10.1016/0001-8708(76)90022-0. Google Scholar

[1]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[2]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[3]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[4]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[5]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[6]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[7]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[8]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[9]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[10]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[11]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[12]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[13]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[14]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[15]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[16]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[17]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[18]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[19]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[20]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]