Citation: |
[1] |
K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997. |
[2] |
K. J. Falconer, The multifractal spectrum of statistically self-similar measures, Journal of Theoretical Probability, 7 (1994), 681-701.doi: 10.1007/BF02213576. |
[3] |
A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.doi: 10.1007/978-1-4615-3626-0. |
[4] |
S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics 1730, Springer, Berlin, 2000.doi: 10.1007/BFb0103945. |
[5] |
S. Graf and H. Luschgy, The Quantization dimension of self-similar probabilities, Math. Nachr., 241 (2002), 103-109. |
[6] |
R. Gray and D. Neuhoff, Quantization, IEEE Trans. Inform. Theory, 44 (1998), 2325-2383.doi: 10.1109/18.720541. |
[7] |
J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.doi: 10.1512/iumj.1981.30.30055. |
[8] |
P. Hanus, R. D. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Math. Hung., 96 (2002), 27-98.doi: 10.1023/A:1015613628175. |
[9] |
L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Institute of Physics Publishing, Nonlinearity, 15 (2002), 189-199.doi: 10.1088/0951-7715/15/1/309. |
[10] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.doi: 10.1112/plms/s3-73.1.105. |
[11] |
R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge, 2003.doi: 10.1017/CBO9780511543050. |
[12] |
N. Patzschke, Self-conformal multifractal measures, Adv. Appli. Math, 19 (1997), 486-513.doi: 10.1006/aama.1997.0557. |
[13] |
M. K. Roychowdhury, Lower quantization coefficient and the $F$-conformal measure, Colloquium Mathematicum, 122 (2011), 255-263.doi: 10.4064/cm122-2-11. |
[14] |
M. K. Roychowdhury, Quantization dimension function and ergodic measure with bounded distortion, Bulletin of the Polish Academy of Sciences Mathematics, 57 (2009), 251-262.doi: 10.4064/ba57-3-7. |
[15] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[16] |
K. Yoshida, Functional Analysis, Berlin-Heidelberg-New York: Springer, 1966. |
[17] |
S. Zhu, The lower quantization coefficient of the $F$-conformal measure is positive, Nonlinear Analysis, 69 (2008), 448-455.doi: 10.1016/j.na.2007.05.031. |