July  2014, 34(7): 2847-2860. doi: 10.3934/dcds.2014.34.2847

Curves of equiharmonic solutions, and problems at resonance

1. 

Department Of Mathematical Sciences, University Of Cincinnati, Cincinnati Ohio 45221-0025

Received  June 2013 Revised  September 2013 Published  December 2013

We consider the semilinear Dirichlet problem \[ \Delta u+kg(u)=\mu_1 \varphi_1+\cdots +\mu _n \varphi_n+e(x) \; \; for \; x \in \Omega, \; \; u=0 \; \; on \; \partial \Omega, \] where $\varphi_k$ is the $k$-th eigenfunction of the Laplacian on $\Omega$ and $e(x) \perp \varphi_k$, $k=1, \ldots,n$. Write the solution in the form $u(x)= \Sigma _{i=1}^n \xi _i \varphi_i+U(x)$, with $ U \perp \varphi_k$, $k=1, \ldots,n$. Starting with $k=0$, when the problem is linear, we continue the solution in $k$ by keeping $\xi =(\xi _1, \ldots,\xi _n)$ fixed, but allowing for $\mu =(\mu _1, \ldots,\mu _n)$ to vary. Studying the map $\xi \rightarrow \mu$ provides us with the existence and multiplicity results for the above problem. We apply our results to problems at resonance, at both the principal and higher eigenvalues. Our approach is suitable for numerical calculations, which we implement, illustrating our results.
Citation: Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847
References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems,, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 145.  doi: 10.1017/S0308210500017017.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces,, Ann. Mat. Pura Appl. (4), 93 (1972), 231.  doi: 10.1007/BF02412022.  Google Scholar

[3]

J. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis,, Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[4]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem,, Indiana Univ. Math. J., 24 (): 837.   Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.   Google Scholar

[6]

L. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

D. G. de Figueiredo and W. M. Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition,, Nonlinear Anal., 3 (1979), 629.  doi: 10.1016/0362-546X(79)90091-9.  Google Scholar

[8]

R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. Amer. Math. Soc., 311 (1989), 711.  doi: 10.1090/S0002-9947-1989-0951886-3.  Google Scholar

[9]

P. Korman, A global solution curve for a class of periodic problems, including the pendulum equation,, Z. Angew. Math. Phys., 58 (2007), 749.  doi: 10.1007/s00033-006-6014-6.  Google Scholar

[10]

P. Korman, Curves of equiharmonic solutions, and ranges of nonlinear equations,, Adv. Differential Equations, 14 (2009), 963.   Google Scholar

[11]

P. Korman, Global solution curves for boundary value problems, with linear part at resonance,, Nonlinear Anal., 71 (2009), 2456.  doi: 10.1016/j.na.2009.01.128.  Google Scholar

[12]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[13]

A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem,, J. Math. Anal. Appl., 84 (1981), 282.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[14]

L. Nirenberg, Topics in Nonlinear Functional Analysis,, Lecture Notes, (1974), 1973.   Google Scholar

show all references

References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems,, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 145.  doi: 10.1017/S0308210500017017.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces,, Ann. Mat. Pura Appl. (4), 93 (1972), 231.  doi: 10.1007/BF02412022.  Google Scholar

[3]

J. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis,, Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[4]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem,, Indiana Univ. Math. J., 24 (): 837.   Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.   Google Scholar

[6]

L. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

D. G. de Figueiredo and W. M. Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition,, Nonlinear Anal., 3 (1979), 629.  doi: 10.1016/0362-546X(79)90091-9.  Google Scholar

[8]

R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. Amer. Math. Soc., 311 (1989), 711.  doi: 10.1090/S0002-9947-1989-0951886-3.  Google Scholar

[9]

P. Korman, A global solution curve for a class of periodic problems, including the pendulum equation,, Z. Angew. Math. Phys., 58 (2007), 749.  doi: 10.1007/s00033-006-6014-6.  Google Scholar

[10]

P. Korman, Curves of equiharmonic solutions, and ranges of nonlinear equations,, Adv. Differential Equations, 14 (2009), 963.   Google Scholar

[11]

P. Korman, Global solution curves for boundary value problems, with linear part at resonance,, Nonlinear Anal., 71 (2009), 2456.  doi: 10.1016/j.na.2009.01.128.  Google Scholar

[12]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[13]

A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem,, J. Math. Anal. Appl., 84 (1981), 282.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[14]

L. Nirenberg, Topics in Nonlinear Functional Analysis,, Lecture Notes, (1974), 1973.   Google Scholar

[1]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[2]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[3]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[4]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[5]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[6]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[7]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[8]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231

[9]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[14]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[18]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[19]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]