July  2014, 34(7): 2873-2892. doi: 10.3934/dcds.2014.34.2873

Long-time behavior for a class of degenerate parabolic equations

1. 

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, 730070, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China

3. 

Department of Mathematics, Nanjing University, Nanjing 210093

Received  April 2013 Revised  September 2013 Published  December 2013

The long-time behavior of a class of degenerate parabolic equations in a bounded domain will be considered in the sense that the nonnegative diffusion coefficient $a(x)$ is allowed to vanish on a nonempty closed subset with zero measure. For this purpose, some appropriate weighted Sobolev spaces are introduced and the corresponding embedding theorem is established. Then, we show the global existence and uniqueness of weak solutions. Finally, we distinguish two cases (subcritical and supcritical) to prove the existence of compact attractors for the semigroup associated with this class of equations.
Citation: Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873
References:
[1]

M. Aizenman, A sufficient condition for the avoidance of sets by measure preserving flows in $\mathbb R^n$,, Duke Math. J., 45 (1978), 809.  doi: 10.1215/S0012-7094-78-04538-6.  Google Scholar

[2]

C. T. Anh and P. Q. Hung, Global attractors for a class of degenerate parabolic equations,, Acta Math. Vietnam., 34 (2009), 213.   Google Scholar

[3]

C. T. Anh and P. Q. Hung, Global existence and long-time behavior of solutions to a class of degenerate parabolic equations,, Ann. Polon. Math., 93 (2008), 217.  doi: 10.4064/ap93-3-3.  Google Scholar

[4]

C. T. Anh, N. M. Chuong and T. D. Ke, Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations,, J. Math. Anal. Appl., 363 (2010), 444.  doi: 10.1016/j.jmaa.2009.09.034.  Google Scholar

[5]

C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators,, Nonlinear Anal., 71 (2009), 4415.  doi: 10.1016/j.na.2009.02.125.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992).   Google Scholar

[7]

A. C. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations,, Bol. Soc. Parana. Mat. (3), 26 (2008), 117.  doi: 10.5269/bspm.v26i1-2.7415.  Google Scholar

[8]

J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent,, Portugal. Math., 53 (1996), 167.   Google Scholar

[9]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[10]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem,, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 187.  doi: 10.1007/s000300050004.  Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods,, Reprinted from the 1984 edition, (1984).   Google Scholar

[12]

E. Dibenedetto, Degenerate Parabolic Equations,, Universitext, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[13]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions,, J. Differential Equations, 253 (2012), 126.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[14]

N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation,, Z. Angew. Math. Phys., 56 (2005), 11.  doi: 10.1007/s00033-004-2045-z.  Google Scholar

[15]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence,, Calc. Var. Partial Differential Equations, 25 (2006), 361.  doi: 10.1007/s00526-005-0347-4.  Google Scholar

[16]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations,, Nonlinear Anal., 63 (2005).  doi: 10.1016/j.na.2005.03.022.  Google Scholar

[17]

V. K. Le and K. Schmitt, On boundary value problems for degenerate quasilinear elliptic equations and inequalities,, J. Differential Equations, 144 (1998), 170.  doi: 10.1006/jdeq.1997.3384.  Google Scholar

[18]

M. Marion, Attractors for reactions-diffusion equations: Existence and estimate of their dimension,, Appl. Anal., 25 (1987), 101.  doi: 10.1080/00036818708839678.  Google Scholar

[19]

M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension,, J. Dynam. Differential Equations, 1 (1989), 245.  doi: 10.1007/BF01053928.  Google Scholar

[20]

Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[21]

D. D. Monticelli and K. R. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction,, J. Differential Equations, 247 (2009), 1993.  doi: 10.1016/j.jde.2009.06.024.  Google Scholar

[22]

F. Paronetto, Some new results on the convergence of degenerate elliptic and parabolic equations,, J. Convex Anal., 9 (2002), 31.   Google Scholar

[23]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[24]

E. Sánchez Palencia, Comportements local et macroscopique d'un type de milieux physiques hétérogènes,, Intern. Jour. Engin. Sci., 12 (1974), 331.  doi: 10.1016/0020-7225(74)90062-7.  Google Scholar

[25]

L. Tartar and F. Murat, H -convergence,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 21.   Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).   Google Scholar

[27]

J. Valero and A. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems,, J. Math. Anal. Appl., 323 (2006), 614.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[28]

C. Wang and J. Yin, Evolutionary weighted p -Laplacian with boundary degeneracy,, J. Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[29]

C.-K. Zhong, M.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

M. Aizenman, A sufficient condition for the avoidance of sets by measure preserving flows in $\mathbb R^n$,, Duke Math. J., 45 (1978), 809.  doi: 10.1215/S0012-7094-78-04538-6.  Google Scholar

[2]

C. T. Anh and P. Q. Hung, Global attractors for a class of degenerate parabolic equations,, Acta Math. Vietnam., 34 (2009), 213.   Google Scholar

[3]

C. T. Anh and P. Q. Hung, Global existence and long-time behavior of solutions to a class of degenerate parabolic equations,, Ann. Polon. Math., 93 (2008), 217.  doi: 10.4064/ap93-3-3.  Google Scholar

[4]

C. T. Anh, N. M. Chuong and T. D. Ke, Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations,, J. Math. Anal. Appl., 363 (2010), 444.  doi: 10.1016/j.jmaa.2009.09.034.  Google Scholar

[5]

C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators,, Nonlinear Anal., 71 (2009), 4415.  doi: 10.1016/j.na.2009.02.125.  Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992).   Google Scholar

[7]

A. C. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations,, Bol. Soc. Parana. Mat. (3), 26 (2008), 117.  doi: 10.5269/bspm.v26i1-2.7415.  Google Scholar

[8]

J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent,, Portugal. Math., 53 (1996), 167.   Google Scholar

[9]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[10]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem,, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 187.  doi: 10.1007/s000300050004.  Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods,, Reprinted from the 1984 edition, (1984).   Google Scholar

[12]

E. Dibenedetto, Degenerate Parabolic Equations,, Universitext, (1993).  doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[13]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions,, J. Differential Equations, 253 (2012), 126.  doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[14]

N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation,, Z. Angew. Math. Phys., 56 (2005), 11.  doi: 10.1007/s00033-004-2045-z.  Google Scholar

[15]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence,, Calc. Var. Partial Differential Equations, 25 (2006), 361.  doi: 10.1007/s00526-005-0347-4.  Google Scholar

[16]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations,, Nonlinear Anal., 63 (2005).  doi: 10.1016/j.na.2005.03.022.  Google Scholar

[17]

V. K. Le and K. Schmitt, On boundary value problems for degenerate quasilinear elliptic equations and inequalities,, J. Differential Equations, 144 (1998), 170.  doi: 10.1006/jdeq.1997.3384.  Google Scholar

[18]

M. Marion, Attractors for reactions-diffusion equations: Existence and estimate of their dimension,, Appl. Anal., 25 (1987), 101.  doi: 10.1080/00036818708839678.  Google Scholar

[19]

M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension,, J. Dynam. Differential Equations, 1 (1989), 245.  doi: 10.1007/BF01053928.  Google Scholar

[20]

Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[21]

D. D. Monticelli and K. R. Payne, Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction,, J. Differential Equations, 247 (2009), 1993.  doi: 10.1016/j.jde.2009.06.024.  Google Scholar

[22]

F. Paronetto, Some new results on the convergence of degenerate elliptic and parabolic equations,, J. Convex Anal., 9 (2002), 31.   Google Scholar

[23]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[24]

E. Sánchez Palencia, Comportements local et macroscopique d'un type de milieux physiques hétérogènes,, Intern. Jour. Engin. Sci., 12 (1974), 331.  doi: 10.1016/0020-7225(74)90062-7.  Google Scholar

[25]

L. Tartar and F. Murat, H -convergence,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 21.   Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).   Google Scholar

[27]

J. Valero and A. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems,, J. Math. Anal. Appl., 323 (2006), 614.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[28]

C. Wang and J. Yin, Evolutionary weighted p -Laplacian with boundary degeneracy,, J. Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[29]

C.-K. Zhong, M.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]