July  2014, 34(7): 2893-2905. doi: 10.3934/dcds.2014.34.2893

Generalized exact boundary synchronization for a coupled system of wave equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2. 

Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg

3. 

School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433

Received  August 2013 Revised  November 2013 Published  December 2013

By means of Moore-Penrose generalized inverse, a general framework is presented to treat the generalized exact boundary synchronization for a coupled systems of wave equations.
Citation: Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications,, 2nd Edition, (2003).   Google Scholar

[2]

R. A. Horn and C. R. Johnson, Matrix Analysis,, 2nd Edition, (2013).   Google Scholar

[3]

Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations,, Chin. Ann. Math. Ser. B, 34 (2013), 479.  doi: 10.1007/s11401-013-0785-9.  Google Scholar

[4]

Long Hu, Tatsien Li and Bopeng Rao, Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type,, Communications on Pure and Applied Analysis, 13 (2014).   Google Scholar

[5]

Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS Series on Applied Mathematics, (2010).   Google Scholar

[6]

Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 31 (2010), 723.  doi: 10.1007/s11401-010-0600-9.  Google Scholar

[7]

Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[8]

Tatsien Li and Bopeng Rao, A note on the exact synchronization by groups for a coupled system of wave equations,, to appear in Math. Meth. Appl. Sci., ().   Google Scholar

[9]

Tatsien Li, Bopeng Rao and Long Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, to appear in ESAIM: COCV. DOI: 10.1051/COCV/2013066, ().   Google Scholar

[10]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués,, Vol. 1, (1988).   Google Scholar

[11]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[12]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications,, 2nd Edition, (2003).   Google Scholar

[2]

R. A. Horn and C. R. Johnson, Matrix Analysis,, 2nd Edition, (2013).   Google Scholar

[3]

Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations,, Chin. Ann. Math. Ser. B, 34 (2013), 479.  doi: 10.1007/s11401-013-0785-9.  Google Scholar

[4]

Long Hu, Tatsien Li and Bopeng Rao, Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type,, Communications on Pure and Applied Analysis, 13 (2014).   Google Scholar

[5]

Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS Series on Applied Mathematics, (2010).   Google Scholar

[6]

Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 31 (2010), 723.  doi: 10.1007/s11401-010-0600-9.  Google Scholar

[7]

Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[8]

Tatsien Li and Bopeng Rao, A note on the exact synchronization by groups for a coupled system of wave equations,, to appear in Math. Meth. Appl. Sci., ().   Google Scholar

[9]

Tatsien Li, Bopeng Rao and Long Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, to appear in ESAIM: COCV. DOI: 10.1051/COCV/2013066, ().   Google Scholar

[10]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués,, Vol. 1, (1988).   Google Scholar

[11]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[12]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[1]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[2]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[3]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[4]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[5]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[6]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[7]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[8]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[9]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[10]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[11]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[12]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[13]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[14]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[15]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[16]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[17]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[18]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[19]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[20]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]