July  2014, 34(7): 2929-2962. doi: 10.3934/dcds.2014.34.2929

Discrete admissibility and exponential trichotomy of dynamical systems

1. 

Faculty of Mathematics and Computer Science, West University of Timişoara, V. Pârvan Blvd. No. 4, 300223 Timişoara, Romania

Received  March 2013 Revised  October 2013 Published  December 2013

The aim of this paper is to present a new and complex study on the asymptotic behavior of dynamical systems, providing necessary and sufficient conditions for the existence of the exponential trichotomy. We associate to a nonautonomous discrete dynamical system an input-output system and we define a new admissibility concept called $(l^\infty(\mathbb{Z}, X), l^1(\mathbb{Z}, X))$-admissibility. First, we prove that the admissibility is a sufficient condition for the existence of the trichotomy projections, for their uniform boundedness, for their compatibility with the coefficients of the initial dynamical system and for certain reversibility properties. Assuming that the associated input-output operators satisfy a natural boundedness condition, we deduce that the admissibility is a necessary and sufficient condition for the existence of the uniform exponential trichotomy. Next, based on admissibility arguments, we obtain, for the first time in the literature, that all the trichotomic properties of a nonautonomous system can be completely recovered from the trichotomic behavior of the associated discrete dynamical system. Finally, we apply the main results in order to obtain a new characterization for uniform exponential trichotomy of evolution families in terms of discrete admissibility.
Citation: Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929
References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[2]

L. Barreira and C. Valls, Center manifolds for nonuniformly partially hyperbolic diffeomorphisms,, J. Math. Pures Appl. (9), 84 (2005), 1693. doi: 10.1016/j.matpur.2005.07.005. Google Scholar

[3]

L. Barreira and C. Valls, Center manifolds for infinite delay,, J. Differential Equations, 247 (2009), 1297. doi: 10.1016/j.jde.2009.04.006. Google Scholar

[4]

L. Barreira and C. Valls, Robustness of nonuniform exponential trichotomies in Banach spaces,, J. Math. Anal. Appl., 351 (2009), 373. doi: 10.1016/j.jmaa.2008.10.030. Google Scholar

[5]

L. Barreira and C. Valls, Lyapunov functions for trichotomies with growth rates,, J. Differential Equations, 248 (2010), 151. doi: 10.1016/j.jde.2009.07.001. Google Scholar

[6]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and admissibility,, Discrete Contin. Dyn. Syst., 30 (2011), 39. doi: 10.3934/dcds.2011.30.39. Google Scholar

[7]

L. Barreira and C. Valls, Admissibility versus nonuniform exponential behavior for noninver-tible cocycles,, Discrete Contin. Dyn. Syst., 33 (2013), 1297. Google Scholar

[8]

C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations,, Math. Ann., 172 (1967), 139. doi: 10.1007/BF01350095. Google Scholar

[9]

S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces,, J. Differential Equations, 120 (1995), 429. doi: 10.1006/jdeq.1995.1117. Google Scholar

[10]

Ju. L. Dalec'kiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in Banach Spaces,, Trans. Math. Monographs, (1974). Google Scholar

[11]

S. Elaydi and O. Hájek, Some remarks on nonlinear dichotomy and trichotomy,, in Non-linear Analysis and Applications (Arlington, 109 (1987), 175. Google Scholar

[12]

S. Elaydi and O. Hájek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7. Google Scholar

[13]

S. Elaydi and O. Hájek, Exponential dichotomy and trichotomy of nonlinear differential equations,, Differ. Integral Equ., 3 (1990), 1201. Google Scholar

[14]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Differ. Equations Appl., 3 (1998), 417. doi: 10.1080/10236199708808113. Google Scholar

[15]

N. T. Huy and N. Van Minh, Exponential dichotomy of difference equations and applications to evolution equations on the half-line,, Comput. Math. Appl., 42 (2001), 301. doi: 10.1016/S0898-1221(01)00155-9. Google Scholar

[16]

J. López-Fenner and M. Pinto, $(h,k)$-trichotomies and asymptotics of nonautonomous difference equations,, Comp. Math. Appl., 33 (1997), 105. doi: 10.1016/S0898-1221(97)00080-1. Google Scholar

[17]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces,, Pure and Applied Mathematics, (1966). Google Scholar

[18]

M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families,, Discrete Contin. Dyn. Syst., 9 (2003), 383. Google Scholar

[19]

N. Van Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28. doi: 10.1006/jmaa.2001.7450. Google Scholar

[20]

O. Perron, Die Stabilitätsfrage bei Differentialgleischungen,, Math. Z., 32 (1930), 703. doi: 10.1007/BF01194662. Google Scholar

[21]

K. J. Palmer, Exponential dichotomy and expansivity,, Ann. Mat. Pura Appl. (4), 185 (2006). doi: 10.1007/s10231-004-0141-5. Google Scholar

[22]

V. A. Pliss and G. R. Sell, Robustness of the exponential dichotomy in infinite-dimensional dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 471. doi: 10.1023/A:1021913903923. Google Scholar

[23]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems, III,, J. Differential Equations, 22 (1976), 497. doi: 10.1016/0022-0396(76)90043-7. Google Scholar

[24]

B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p, l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397. doi: 10.1016/j.jmaa.2005.04.047. Google Scholar

[25]

B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line,, J. Math. Anal. Appl., 323 (2006), 1465. doi: 10.1016/j.jmaa.2005.12.002. Google Scholar

[26]

B. Sasu and A. L. Sasu, Exponential trichotomy and p-admissibility for evolution families on the real line,, Math. Z., 253 (2006), 515. doi: 10.1007/s00209-005-0920-8. Google Scholar

[27]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, J. Math. Anal. Appl., 344 (2008), 906. doi: 10.1016/j.jmaa.2008.03.019. Google Scholar

[28]

A. L. Sasu and B. Sasu, Exponential trichotomy for variational difference equations,, J. Difference Equ. Appl., 15 (2009), 693. doi: 10.1080/10236190802285118. Google Scholar

[29]

A. L. Sasu and B. Sasu, Input-output admissibility and exponential trichotomy of difference equations,, J. Math. Anal. Appl., 380 (2011), 17. doi: 10.1016/j.jmaa.2011.02.045. Google Scholar

[30]

B. Sasu and A. L. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line,, Discrete Contin. Dyn. Syst., 33 (2013), 3057. doi: 10.3934/dcds.2013.33.3057. Google Scholar

[31]

X. Liu, Exponential trichotomy and homoclinic bifurcation with saddle-center equilibrium,, Appl. Math. Lett., 23 (2010), 409. doi: 10.1016/j.aml.2009.11.008. Google Scholar

[32]

D. Zhu, Exponential trichotomy and heteroclinic bifurcations,, Nonlinear Anal., 28 (1997), 547. doi: 10.1016/0362-546X(95)00164-Q. Google Scholar

show all references

References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[2]

L. Barreira and C. Valls, Center manifolds for nonuniformly partially hyperbolic diffeomorphisms,, J. Math. Pures Appl. (9), 84 (2005), 1693. doi: 10.1016/j.matpur.2005.07.005. Google Scholar

[3]

L. Barreira and C. Valls, Center manifolds for infinite delay,, J. Differential Equations, 247 (2009), 1297. doi: 10.1016/j.jde.2009.04.006. Google Scholar

[4]

L. Barreira and C. Valls, Robustness of nonuniform exponential trichotomies in Banach spaces,, J. Math. Anal. Appl., 351 (2009), 373. doi: 10.1016/j.jmaa.2008.10.030. Google Scholar

[5]

L. Barreira and C. Valls, Lyapunov functions for trichotomies with growth rates,, J. Differential Equations, 248 (2010), 151. doi: 10.1016/j.jde.2009.07.001. Google Scholar

[6]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and admissibility,, Discrete Contin. Dyn. Syst., 30 (2011), 39. doi: 10.3934/dcds.2011.30.39. Google Scholar

[7]

L. Barreira and C. Valls, Admissibility versus nonuniform exponential behavior for noninver-tible cocycles,, Discrete Contin. Dyn. Syst., 33 (2013), 1297. Google Scholar

[8]

C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations,, Math. Ann., 172 (1967), 139. doi: 10.1007/BF01350095. Google Scholar

[9]

S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces,, J. Differential Equations, 120 (1995), 429. doi: 10.1006/jdeq.1995.1117. Google Scholar

[10]

Ju. L. Dalec'kiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in Banach Spaces,, Trans. Math. Monographs, (1974). Google Scholar

[11]

S. Elaydi and O. Hájek, Some remarks on nonlinear dichotomy and trichotomy,, in Non-linear Analysis and Applications (Arlington, 109 (1987), 175. Google Scholar

[12]

S. Elaydi and O. Hájek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7. Google Scholar

[13]

S. Elaydi and O. Hájek, Exponential dichotomy and trichotomy of nonlinear differential equations,, Differ. Integral Equ., 3 (1990), 1201. Google Scholar

[14]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Differ. Equations Appl., 3 (1998), 417. doi: 10.1080/10236199708808113. Google Scholar

[15]

N. T. Huy and N. Van Minh, Exponential dichotomy of difference equations and applications to evolution equations on the half-line,, Comput. Math. Appl., 42 (2001), 301. doi: 10.1016/S0898-1221(01)00155-9. Google Scholar

[16]

J. López-Fenner and M. Pinto, $(h,k)$-trichotomies and asymptotics of nonautonomous difference equations,, Comp. Math. Appl., 33 (1997), 105. doi: 10.1016/S0898-1221(97)00080-1. Google Scholar

[17]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces,, Pure and Applied Mathematics, (1966). Google Scholar

[18]

M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families,, Discrete Contin. Dyn. Syst., 9 (2003), 383. Google Scholar

[19]

N. Van Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28. doi: 10.1006/jmaa.2001.7450. Google Scholar

[20]

O. Perron, Die Stabilitätsfrage bei Differentialgleischungen,, Math. Z., 32 (1930), 703. doi: 10.1007/BF01194662. Google Scholar

[21]

K. J. Palmer, Exponential dichotomy and expansivity,, Ann. Mat. Pura Appl. (4), 185 (2006). doi: 10.1007/s10231-004-0141-5. Google Scholar

[22]

V. A. Pliss and G. R. Sell, Robustness of the exponential dichotomy in infinite-dimensional dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 471. doi: 10.1023/A:1021913903923. Google Scholar

[23]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems, III,, J. Differential Equations, 22 (1976), 497. doi: 10.1016/0022-0396(76)90043-7. Google Scholar

[24]

B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p, l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397. doi: 10.1016/j.jmaa.2005.04.047. Google Scholar

[25]

B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line,, J. Math. Anal. Appl., 323 (2006), 1465. doi: 10.1016/j.jmaa.2005.12.002. Google Scholar

[26]

B. Sasu and A. L. Sasu, Exponential trichotomy and p-admissibility for evolution families on the real line,, Math. Z., 253 (2006), 515. doi: 10.1007/s00209-005-0920-8. Google Scholar

[27]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, J. Math. Anal. Appl., 344 (2008), 906. doi: 10.1016/j.jmaa.2008.03.019. Google Scholar

[28]

A. L. Sasu and B. Sasu, Exponential trichotomy for variational difference equations,, J. Difference Equ. Appl., 15 (2009), 693. doi: 10.1080/10236190802285118. Google Scholar

[29]

A. L. Sasu and B. Sasu, Input-output admissibility and exponential trichotomy of difference equations,, J. Math. Anal. Appl., 380 (2011), 17. doi: 10.1016/j.jmaa.2011.02.045. Google Scholar

[30]

B. Sasu and A. L. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line,, Discrete Contin. Dyn. Syst., 33 (2013), 3057. doi: 10.3934/dcds.2013.33.3057. Google Scholar

[31]

X. Liu, Exponential trichotomy and homoclinic bifurcation with saddle-center equilibrium,, Appl. Math. Lett., 23 (2010), 409. doi: 10.1016/j.aml.2009.11.008. Google Scholar

[32]

D. Zhu, Exponential trichotomy and heteroclinic bifurcations,, Nonlinear Anal., 28 (1997), 547. doi: 10.1016/0362-546X(95)00164-Q. Google Scholar

[1]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[2]

Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks & Heterogeneous Media, 2019, 14 (1) : 79-100. doi: 10.3934/nhm.2019005

[3]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[4]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[5]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[6]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[7]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[8]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[9]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

[10]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[11]

Luis Barreira, Claudia Valls. Admissibility versus nonuniform exponential behavior for noninvertible cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1297-1311. doi: 10.3934/dcds.2013.33.1297

[12]

Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007

[13]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[14]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[15]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[16]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[17]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[18]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[19]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[20]

Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]