-
Previous Article
The Aubry-Mather theorem for driven generalized elastic chains
- DCDS Home
- This Issue
-
Next Article
Discrete admissibility and exponential trichotomy of dynamical systems
Hyperbolicity and types of shadowing for $C^1$ generic vector fields
1. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil |
References:
[1] |
F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the $C^1$ topology,, Discrete Contin. Dyn. Syst., 17 (2007), 223.
|
[2] |
A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario,, Ergodic Theory Dynam. Systems, 33 (2013), 1644.
doi: 10.1017/etds.2012.111. |
[3] |
A. Arbieto and C. Matheus, A pasting lemma and some apllications for conservative systems,, Ergodic Theory Dynam. Systems, 27 (2007), 1399.
doi: 10.1017/S014338570700017X. |
[4] |
A. Arbieto and C. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817.
doi: 10.1090/S0002-9939-2013-11536-4. |
[5] |
M.-C. Arnaud, Le "closing lemma" en topologie $C^1$,, Mem. Soc. Math. Fr. (N. S.), (1998).
|
[6] |
S. Bautista and C. Morales, Lectures on sectional Anosov flows,, preprint, (2011). Google Scholar |
[7] |
M. Bessa, A generic incompressible flow is topological mixing,, C. R. Math. Acad. Sci. Paris, 346 (2008), 1169.
doi: 10.1016/j.crma.2008.07.012. |
[8] |
M. Bessa and J. Rocha, Contributions to the geometric and ergodic theory of conservative flows,, Ergod. Th. & Dynam. Sys., 33 (2013), 1709.
doi: 10.1017/etds.2012.110. |
[9] |
M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Differential Equations, 245 (2008), 3127.
doi: 10.1016/j.jde.2008.02.045. |
[10] |
M. L. Blank, Metric properties of minimal solutions of discrete periodical variational problems,, Nonlinearity, 2 (1989), 1.
doi: 10.1088/0951-7715/2/1/001. |
[11] |
C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33.
doi: 10.1007/s00222-004-0368-1. |
[12] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975).
|
[13] |
R. Bowen, On Axiom A Diffeomorphisms,, Regional Conference Series in Mathematics, (1978).
|
[14] |
C. Conley, Isolated Invariant sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).
|
[15] |
S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. Inst. Hautes Études Sci., (2006), 87.
doi: 10.1007/s10240-006-0002-4. |
[16] |
T. Eirola, O. Nevalinna and S. Pilyugin, Limit shadowing property,, Numer. Funct. Anal. Optim., 18 (1997), 75.
doi: 10.1080/01630569708816748. |
[17] |
C. Ferreira, Stability properties of divergence-free vector fields,, Dyn. Syst., 27 (2012), 223.
doi: 10.1080/14689367.2012.655710. |
[18] |
J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[19] |
S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.
doi: 10.1007/s00222-005-0479-3. |
[20] |
S. Gan, M. Li and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow,, Discrete Contin. Dyn. Syst., 13 (2005), 239.
doi: 10.3934/dcds.2005.13.239. |
[21] |
S. Gan, L. Wen and S. Zhu, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945.
doi: 10.3934/dcds.2008.21.945. |
[22] |
R. Gu, The asymptotic average shadowing property and transitivity,, Nonlinear Anal., 67 (2007), 1680.
doi: 10.1016/j.na.2006.07.040. |
[23] |
R. Gu, The asymptotic average-shadowing property and transitivity for flows,, Chaos Solitons Fractals, 41 (2009), 2234.
doi: 10.1016/j.chaos.2008.08.029. |
[24] |
R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and transitivity for continuous flows,, Chaos Solitons Fractals, 23 (2005), 989.
doi: 10.1016/j.chaos.2004.06.059. |
[25] |
J. K. Hale, Asymptotic Behaviour of Dissipative Systems,, Math. Surveys and Monographs, 25 (1988).
|
[26] |
M. Hirsh, C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015.
doi: 10.1090/S0002-9904-1970-12537-X. |
[27] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).
|
[28] |
M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property,, J. Math. Soc. Japan, 37 (1985), 489.
doi: 10.2969/jmsj/03730489. |
[29] |
I. Kupka, Contribution à la théorie des champs génériques,, Contributions to Differential Equations, 2 (1963), 457.
|
[30] |
M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms,, Adv. Difference Equ., 2012 (2012).
doi: 10.1186/1687-1847-2012-91. |
[31] |
K. Lee and X. Wen, Shadowable chain transitive sets of C1-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263.
doi: 10.4134/BKMS.2012.49.2.263. |
[32] |
R. Metzger and C. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587.
doi: 10.1017/S0143385707000995. |
[33] |
J. Lewowicz, Lyapunov functions and topological stability,, J. Differential Equations, 38 (1980), 192.
doi: 10.1016/0022-0396(80)90004-2. |
[34] |
S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Mathematics, (1706).
|
[35] |
C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians,, Ergodic Theory Dynam. Systems, 3 (1983), 261.
doi: 10.1017/S0143385700001978. |
[36] |
C. Robinson, Generic properties of conservative systems,, Amer. J. Math., 92 (1970), 562.
doi: 10.2307/2373361. |
[37] |
M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).
|
[38] |
S. Smale, Stable manifolds for differential equations and diffeomorphisms,, Ann. Sc. Norm. Super. Pisa (3), 17 (1963), 97.
|
[39] |
L. Wen and Z. Xia, $C^1$-connecting lemmas,, Trans. Amer, 352 (2000), 5213.
doi: 10.1090/S0002-9947-00-02553-8. |
[40] |
L. Wen, On the preperiodic set,, Discrete Contin. Dynam. Systems, 6 (2000), 237.
doi: 10.3934/dcds.2000.6.237. |
show all references
References:
[1] |
F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the $C^1$ topology,, Discrete Contin. Dyn. Syst., 17 (2007), 223.
|
[2] |
A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario,, Ergodic Theory Dynam. Systems, 33 (2013), 1644.
doi: 10.1017/etds.2012.111. |
[3] |
A. Arbieto and C. Matheus, A pasting lemma and some apllications for conservative systems,, Ergodic Theory Dynam. Systems, 27 (2007), 1399.
doi: 10.1017/S014338570700017X. |
[4] |
A. Arbieto and C. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817.
doi: 10.1090/S0002-9939-2013-11536-4. |
[5] |
M.-C. Arnaud, Le "closing lemma" en topologie $C^1$,, Mem. Soc. Math. Fr. (N. S.), (1998).
|
[6] |
S. Bautista and C. Morales, Lectures on sectional Anosov flows,, preprint, (2011). Google Scholar |
[7] |
M. Bessa, A generic incompressible flow is topological mixing,, C. R. Math. Acad. Sci. Paris, 346 (2008), 1169.
doi: 10.1016/j.crma.2008.07.012. |
[8] |
M. Bessa and J. Rocha, Contributions to the geometric and ergodic theory of conservative flows,, Ergod. Th. & Dynam. Sys., 33 (2013), 1709.
doi: 10.1017/etds.2012.110. |
[9] |
M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Differential Equations, 245 (2008), 3127.
doi: 10.1016/j.jde.2008.02.045. |
[10] |
M. L. Blank, Metric properties of minimal solutions of discrete periodical variational problems,, Nonlinearity, 2 (1989), 1.
doi: 10.1088/0951-7715/2/1/001. |
[11] |
C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33.
doi: 10.1007/s00222-004-0368-1. |
[12] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975).
|
[13] |
R. Bowen, On Axiom A Diffeomorphisms,, Regional Conference Series in Mathematics, (1978).
|
[14] |
C. Conley, Isolated Invariant sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).
|
[15] |
S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. Inst. Hautes Études Sci., (2006), 87.
doi: 10.1007/s10240-006-0002-4. |
[16] |
T. Eirola, O. Nevalinna and S. Pilyugin, Limit shadowing property,, Numer. Funct. Anal. Optim., 18 (1997), 75.
doi: 10.1080/01630569708816748. |
[17] |
C. Ferreira, Stability properties of divergence-free vector fields,, Dyn. Syst., 27 (2012), 223.
doi: 10.1080/14689367.2012.655710. |
[18] |
J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[19] |
S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.
doi: 10.1007/s00222-005-0479-3. |
[20] |
S. Gan, M. Li and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow,, Discrete Contin. Dyn. Syst., 13 (2005), 239.
doi: 10.3934/dcds.2005.13.239. |
[21] |
S. Gan, L. Wen and S. Zhu, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945.
doi: 10.3934/dcds.2008.21.945. |
[22] |
R. Gu, The asymptotic average shadowing property and transitivity,, Nonlinear Anal., 67 (2007), 1680.
doi: 10.1016/j.na.2006.07.040. |
[23] |
R. Gu, The asymptotic average-shadowing property and transitivity for flows,, Chaos Solitons Fractals, 41 (2009), 2234.
doi: 10.1016/j.chaos.2008.08.029. |
[24] |
R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and transitivity for continuous flows,, Chaos Solitons Fractals, 23 (2005), 989.
doi: 10.1016/j.chaos.2004.06.059. |
[25] |
J. K. Hale, Asymptotic Behaviour of Dissipative Systems,, Math. Surveys and Monographs, 25 (1988).
|
[26] |
M. Hirsh, C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015.
doi: 10.1090/S0002-9904-1970-12537-X. |
[27] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).
|
[28] |
M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property,, J. Math. Soc. Japan, 37 (1985), 489.
doi: 10.2969/jmsj/03730489. |
[29] |
I. Kupka, Contribution à la théorie des champs génériques,, Contributions to Differential Equations, 2 (1963), 457.
|
[30] |
M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms,, Adv. Difference Equ., 2012 (2012).
doi: 10.1186/1687-1847-2012-91. |
[31] |
K. Lee and X. Wen, Shadowable chain transitive sets of C1-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263.
doi: 10.4134/BKMS.2012.49.2.263. |
[32] |
R. Metzger and C. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587.
doi: 10.1017/S0143385707000995. |
[33] |
J. Lewowicz, Lyapunov functions and topological stability,, J. Differential Equations, 38 (1980), 192.
doi: 10.1016/0022-0396(80)90004-2. |
[34] |
S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Mathematics, (1706).
|
[35] |
C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians,, Ergodic Theory Dynam. Systems, 3 (1983), 261.
doi: 10.1017/S0143385700001978. |
[36] |
C. Robinson, Generic properties of conservative systems,, Amer. J. Math., 92 (1970), 562.
doi: 10.2307/2373361. |
[37] |
M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).
|
[38] |
S. Smale, Stable manifolds for differential equations and diffeomorphisms,, Ann. Sc. Norm. Super. Pisa (3), 17 (1963), 97.
|
[39] |
L. Wen and Z. Xia, $C^1$-connecting lemmas,, Trans. Amer, 352 (2000), 5213.
doi: 10.1090/S0002-9947-00-02553-8. |
[40] |
L. Wen, On the preperiodic set,, Discrete Contin. Dynam. Systems, 6 (2000), 237.
doi: 10.3934/dcds.2000.6.237. |
[1] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[2] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[3] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[4] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[5] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[6] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[7] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[8] |
Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097 |
[9] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[10] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[11] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[12] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[13] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[14] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[15] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[16] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[17] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[18] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[19] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[20] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]