January  2014, 34(1): 301-333. doi: 10.3934/dcds.2014.34.301

Random attractors and robustness for stochastic reversible reaction-diffusion systems

1. 

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700

Received  October 2012 Revised  February 2013 Published  June 2013

For a typical stochastic reversible reaction-diffusion system with multiplicative white noise, the trimolecular autocatalytic Gray-Scott system on a three-dimensional bounded domain with random noise perturbation proportional to the state of the system, the existence of a random attractor and its robustness with respect to the reverse reaction rates are proved through sharp and uniform estimates showing the pullback uniform dissipation and the pullback asymptotic compactness.
Citation: Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301
References:
[1]

L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.  Google Scholar

[2]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21. doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Diff. Eqns., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

N. Berestycki, Stochastic calculus and applications., Available from: , ().   Google Scholar

[5]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Math. Anal., 10 (2003), 491-513.  Google Scholar

[6]

T. Caraballo, J. A. Langa and J. C. Robibson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581. doi: 10.1080/03605309808821394.  Google Scholar

[7]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Lecture Notes in Math., Vol. 580, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.  Google Scholar

[9]

I. Chueshov, "Monotone Random Systems Theory and Applications," Lect. Notes of Math., Vol. 1779, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[10]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar

[11]

H. Crauel, G. Dimitroff and M. Scheutzow, Criteria for strong and weak random attractors, J. Dynamics and Differential Equations, 21 (2009), 233-247. doi: 10.1007/s10884-009-9135-8.  Google Scholar

[12]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar

[13]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Analysis and Applications, 15 (1997), 473-491. doi: 10.1080/07362999708809490.  Google Scholar

[14]

A. Doelman, T. J. Kaper and Paul A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563. doi: 10.1088/0951-7715/10/2/013.  Google Scholar

[15]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, The Annals of Probability, 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380.  Google Scholar

[16]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Reports, 59 (1996), 21-45.  Google Scholar

[17]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$, Chem. Eng. Sci., 39 (1984), 1087-1097. Google Scholar

[18]

Y. Hayase and H. R. Brand, The Gray-Scott model under the influence of noise: Reentrant spatiotemporal intermittency in a reaction-diffusion system, J. Chem. Phys., 123 (2005), 124507. doi: 10.1063/1.2038966.  Google Scholar

[19]

D. Hochberg, F. Lesmes, F. Morán and J. Pérez-Mercader, Large-scale emergent properties of an autocatalytic reaction-diffusion model subject to noise, Phys. Rev. E, 68 (2003), 066114. doi: 10.1103/PhysRevE.68.066114.  Google Scholar

[20]

T. Kolokolnikov and J. Wei, On ring-like solutions for the Gray-Scott model: Existence, instability and self-replicating rings, Euro. J. Appl. Math., 16 (2005), 201-237. doi: 10.1017/S0956792505005930.  Google Scholar

[21]

K. J. Lee, W. D. McCormick, Q. Ouyang and H. Swinney, Pattern formation by interacting chemical fronts, Science, 261 (1993), 192-194. doi: 10.1126/science.261.5118.192.  Google Scholar

[22]

H. Mahara, et. al, Three-variable reversible Gray-Scott model, J. Chem. Physics, 121 (2004), 8968-8972. Google Scholar

[23]

P. Martin-Rubio and J. C. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stochastics and Dynamics, 3 (2003), 279-297. doi: 10.1142/S0219493703000772.  Google Scholar

[24]

D. Morgan and T. Kaper, Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots, Physica D, 192 (2004), 33-62. doi: 10.1016/j.physd.2003.12.012.  Google Scholar

[25]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications," Sixth edition, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[26]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192. doi: 10.1126/science.261.5118.189.  Google Scholar

[27]

I. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems. II, J. Chem. Physics, 48 (1968), 1695-1700. doi: 10.1063/1.1668896.  Google Scholar

[28]

K. R. Schenk-Hoppé, Random attractors-general properties, existence and applications to stochastic bifurcation theory, Disc. Cont. Dyn. Systems, 4 (1998), 99-130. doi: 10.3934/dcds.1998.4.99.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractors Approximation and Global Behavior, Dresden, (1992), 185-192. Google Scholar

[30]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.  Google Scholar

[31]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electronic Journal of Differential Equations, 2009 (2009), 18 pp.  Google Scholar

[33]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[34]

B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains, Elec. J. Diff. Eqns., 2012 (2012), 18 pp.  Google Scholar

[35]

J. Wei and M. Winter, Asymmetric spotty patterns for the Gray-Scott model in $\mathbfR^2$, Stud. Appl. Math., 110 (2003), 63-102. doi: 10.1111/1467-9590.00231.  Google Scholar

[36]

Y. You, Global attractor of the Gray-Scott equations, Comm. Pure Appl. Anal., 7 (2008), 947-970. doi: 10.3934/cpaa.2008.7.947.  Google Scholar

[37]

Y. You, Asymptotic dynamics of Selkov equations, Discrete and Continuous Dynamical Systems, Series S, 2 (2009), 193-219. doi: 10.3934/dcdss.2009.2.193.  Google Scholar

[38]

Y. You, Asymptotic dynamics of the modified Schnackenberg equations, Discrete and Continuous Dynmical Systems, Dynamical Systems, Differential Equations and Applications, $7^{th}$ AIMS Conference, suppl., (2009), 857-868.  Google Scholar

[39]

Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 1671-1688. doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[40]

Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Analysis, 74 (2011), 1969-1986. doi: 10.1016/j.na.2010.11.004.  Google Scholar

[41]

Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems, Nonlinear Analysis, 75 (2012), 3049-3071. doi: 10.1016/j.na.2011.12.002.  Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.  Google Scholar

[2]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21. doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Diff. Eqns., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

N. Berestycki, Stochastic calculus and applications., Available from: , ().   Google Scholar

[5]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Math. Anal., 10 (2003), 491-513.  Google Scholar

[6]

T. Caraballo, J. A. Langa and J. C. Robibson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581. doi: 10.1080/03605309808821394.  Google Scholar

[7]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Lecture Notes in Math., Vol. 580, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.  Google Scholar

[9]

I. Chueshov, "Monotone Random Systems Theory and Applications," Lect. Notes of Math., Vol. 1779, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[10]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar

[11]

H. Crauel, G. Dimitroff and M. Scheutzow, Criteria for strong and weak random attractors, J. Dynamics and Differential Equations, 21 (2009), 233-247. doi: 10.1007/s10884-009-9135-8.  Google Scholar

[12]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar

[13]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Analysis and Applications, 15 (1997), 473-491. doi: 10.1080/07362999708809490.  Google Scholar

[14]

A. Doelman, T. J. Kaper and Paul A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563. doi: 10.1088/0951-7715/10/2/013.  Google Scholar

[15]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, The Annals of Probability, 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380.  Google Scholar

[16]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Reports, 59 (1996), 21-45.  Google Scholar

[17]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$, Chem. Eng. Sci., 39 (1984), 1087-1097. Google Scholar

[18]

Y. Hayase and H. R. Brand, The Gray-Scott model under the influence of noise: Reentrant spatiotemporal intermittency in a reaction-diffusion system, J. Chem. Phys., 123 (2005), 124507. doi: 10.1063/1.2038966.  Google Scholar

[19]

D. Hochberg, F. Lesmes, F. Morán and J. Pérez-Mercader, Large-scale emergent properties of an autocatalytic reaction-diffusion model subject to noise, Phys. Rev. E, 68 (2003), 066114. doi: 10.1103/PhysRevE.68.066114.  Google Scholar

[20]

T. Kolokolnikov and J. Wei, On ring-like solutions for the Gray-Scott model: Existence, instability and self-replicating rings, Euro. J. Appl. Math., 16 (2005), 201-237. doi: 10.1017/S0956792505005930.  Google Scholar

[21]

K. J. Lee, W. D. McCormick, Q. Ouyang and H. Swinney, Pattern formation by interacting chemical fronts, Science, 261 (1993), 192-194. doi: 10.1126/science.261.5118.192.  Google Scholar

[22]

H. Mahara, et. al, Three-variable reversible Gray-Scott model, J. Chem. Physics, 121 (2004), 8968-8972. Google Scholar

[23]

P. Martin-Rubio and J. C. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stochastics and Dynamics, 3 (2003), 279-297. doi: 10.1142/S0219493703000772.  Google Scholar

[24]

D. Morgan and T. Kaper, Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots, Physica D, 192 (2004), 33-62. doi: 10.1016/j.physd.2003.12.012.  Google Scholar

[25]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications," Sixth edition, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[26]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192. doi: 10.1126/science.261.5118.189.  Google Scholar

[27]

I. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems. II, J. Chem. Physics, 48 (1968), 1695-1700. doi: 10.1063/1.1668896.  Google Scholar

[28]

K. R. Schenk-Hoppé, Random attractors-general properties, existence and applications to stochastic bifurcation theory, Disc. Cont. Dyn. Systems, 4 (1998), 99-130. doi: 10.3934/dcds.1998.4.99.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractors Approximation and Global Behavior, Dresden, (1992), 185-192. Google Scholar

[30]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.  Google Scholar

[31]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electronic Journal of Differential Equations, 2009 (2009), 18 pp.  Google Scholar

[33]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[34]

B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains, Elec. J. Diff. Eqns., 2012 (2012), 18 pp.  Google Scholar

[35]

J. Wei and M. Winter, Asymmetric spotty patterns for the Gray-Scott model in $\mathbfR^2$, Stud. Appl. Math., 110 (2003), 63-102. doi: 10.1111/1467-9590.00231.  Google Scholar

[36]

Y. You, Global attractor of the Gray-Scott equations, Comm. Pure Appl. Anal., 7 (2008), 947-970. doi: 10.3934/cpaa.2008.7.947.  Google Scholar

[37]

Y. You, Asymptotic dynamics of Selkov equations, Discrete and Continuous Dynamical Systems, Series S, 2 (2009), 193-219. doi: 10.3934/dcdss.2009.2.193.  Google Scholar

[38]

Y. You, Asymptotic dynamics of the modified Schnackenberg equations, Discrete and Continuous Dynmical Systems, Dynamical Systems, Differential Equations and Applications, $7^{th}$ AIMS Conference, suppl., (2009), 857-868.  Google Scholar

[39]

Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 1671-1688. doi: 10.3934/dcdsb.2010.14.1671.  Google Scholar

[40]

Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Analysis, 74 (2011), 1969-1986. doi: 10.1016/j.na.2010.11.004.  Google Scholar

[41]

Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems, Nonlinear Analysis, 75 (2012), 3049-3071. doi: 10.1016/j.na.2011.12.002.  Google Scholar

[1]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[2]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[3]

Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29 (2) : 1969-1990. doi: 10.3934/era.2020100

[4]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[5]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[6]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[7]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[8]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[9]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[10]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[11]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2772. doi: 10.3934/dcdsb.2020028

[12]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[13]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[14]

Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 877-901. doi: 10.3934/dcdsb.2019194

[15]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[16]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[17]

Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114

[18]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[19]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[20]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]