Citation: |
[1] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541.doi: 10.1007/s00222-007-0088-4. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.doi: 10.1098/rsta.1972.0032. |
[3] |
J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for lonf waves, Lectures in Applied Mathematics, 20 (1983), 235-267. |
[4] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.doi: 10.1137/090748500. |
[5] |
A. Boutet de Monvel and D. Shepelsky, A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity, 26 (2013), 2081-2107.doi: 10.1088/0951-7715/26/7/2081. |
[6] |
J. P. Boyd, Equatorial solitary waves. Part I: Rossby solitons, Journal of Physical Oceanography, 10 (1980), 1699-1717.doi: 10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2. |
[7] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation. An Introduction, Princeton University Press, Princeton, NJ, 2003. |
[8] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[9] |
A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Ocean., 43 (2013), 165-175.doi: 10.1175/JPO-D-12-062.1. |
[10] |
A. Constantin, On equatorial wind waves, Differential and Integral Equations, 26 (2013), 237-252. |
[11] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., 117 (2012), C05029.doi: 10.1029/2012JC007879. |
[12] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.doi: 10.1029/2012GL051169. |
[13] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, SIAM, Philadelphia, 2011.doi: 10.1137/1.9781611971873. |
[14] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[15] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp.doi: 10.1063/1.1845603. |
[16] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701. |
[17] |
A. Constantin and J. Escher, Particle trajectories in solitary water wave, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7. |
[18] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.doi: 10.1007/BF02392586. |
[19] |
A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017. |
[20] |
A. Constantin, R. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575.doi: 10.1088/0951-7715/23/10/012. |
[21] |
A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.doi: 10.1007/s10455-006-9042-8. |
[22] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[23] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. |
[24] |
A. Constantin and W. A. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.doi: 10.1002/cpa.3046. |
[25] |
A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[26] |
B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic, Waltham, Mass., 2011. |
[27] |
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theoretical and Mathematical Physics, 133 (2002), 1461-1472.doi: 10.1023/A:1021186408422. |
[28] |
A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory (eds. A. Degasperis and G. Gaeta), World Scientific, 1999, 23-37. |
[29] |
J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153doi: 10.1007/s00209-010-0778-2. |
[30] |
J. Escher, Y. Liu and Z. Yin, Global weak solutions blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485.doi: 10.1016/j.jfa.2006.03.022. |
[31] |
A. V. Fedorov and J. N. Brown, Equatorial waves, in Encyclopedia of Ocean Sciences (ed. J. Steele), Academic, San Diego, Calif., 2009, 3679-3695.doi: 10.1016/B978-012374473-9.00610-X. |
[32] |
C. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Letters, 19 (1967), 1095-1097. |
[33] |
G. A. Gottwald, The Zakharov-Kuznetsov equation as a two-dimensional model for nonlinear Rossby waves, preprint, arXiv:nlin/0312009. |
[34] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.doi: 10.1016/j.euromechflu.2012.10.001. |
[35] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573.doi: 10.1016/j.na.2008.02.104. |
[36] |
D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 15 (2008), 145-150. |
[37] |
D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755-759.doi: 10.1016/j.jmaa.2005.03.001. |
[38] |
D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.doi: 10.2991/jnmp.2005.12.3.3. |
[39] |
D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721. |
[40] |
D. Holm and R. Ivanov, Smooth and peaked solitons of the Camassa-Holm equation and applications, J. of Geometry and Symmetry in Physics, 22 (2011), 13-49.doi: 10.7546/jgsp-22-2011-13-49. |
[41] |
R. Ivanov, Water waves and integrability, Philos. Trans. Roy. Soc.: Ser. A., 365 (2007), 2267-2280.doi: 10.1098/rsta.2007.2007. |
[42] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, 1997.doi: 10.1017/CBO9780511624056. |
[43] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.doi: 10.1017/S0022112001007224. |
[44] |
B. Kolev, Some geometric investigations on the Degasperis-Procesi shallow water equation, Wave Motion, 46 (2009), 412-419.doi: 10.1016/j.wavemoti.2009.06.005. |
[45] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangularchannel, an on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. |
[46] |
Z. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146.doi: 10.1002/cpa.20239. |
[47] |
A. V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A, 45 (2012), 365501.doi: 10.1088/1751-8113/45/36/365501. |
[48] |
O. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14.doi: 10.2991/jnmp.2005.12.1.2. |
[49] |
G. W. Owen, A. J. Willmott and I. D. Abrahams, Scattering of barotropic Rossby waves by the Antarctic Circumpolar Current, J. Geophys. Res., 111 (2006), C12024, 14 pp.doi: 10.1029/2005JC003014. |
[50] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979.doi: 10.1115/1.3157711. |
[51] |
P. B. Rhines, Lectures in Geophysical Fluid Dynamics, Lectures in Applied Mathematics, 20 (1983), 3-58. |
[52] |
G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6-25. |
[53] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974. |
[54] |
V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Plenum, New York, 1984. |