August  2014, 34(8): 3035-3043. doi: 10.3934/dcds.2014.34.3035

Recovering surface profiles of solitary waves on a uniform stream from pressure measurements

1. 

Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom

Received  April 2013 Revised  September 2013 Published  January 2014

In this paper, we derive an explicit formula that permits to recover the free surface wave profile of an irrotational solitary wave with a uniform underlying current from pressure data measured at the flat bed of the fluid. The formula is valid for the governing equations and applies to waves of small and large amplitude.
Citation: Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035
References:
[1]

C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude, Arch. Rat. Mech. Anal., 76 (1981), 9-95. doi: 10.1007/BF00250799.

[2]

A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments, Coast. Engng., 24 (1995), 351-353. doi: 10.1016/0378-3839(94)00038-Y.

[3]

C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers, Coast. Engng., 11 (1987), 309-328. doi: 10.1016/0378-3839(87)90031-7.

[4]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-575. doi: 10.1017/jfm.2012.490.

[5]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. doi: 10.1017/jfm.2013.253.

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7.

[8]

A. Constantin, On the particle paths in solitary water waves, Quart. Appl. Math., 68 (2010), 81-90.

[9]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384. doi: 10.1017/jfm.2012.114.

[10]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments, Arch. Rat. Mech. Anal., 201 (2011), 251-269. doi: 10.1007/s00205-011-0396-0.

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Commun. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299.

[12]

W. Craig and P. Sternberg, Symmetry of solitary waves, Commun. Part. Diff. Equ., 13 (1988), 603-633. doi: 10.1080/03605308808820554.

[13]

B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements, in 10th International Conference on Mathematical and Numerical Aspects of Waves, WAVES 2011, Vancouver, 2011.

[14]

J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves, J. Nonlinear Math. Phys., 15 (2008), 50-57. doi: 10.2991/jnmp.2008.15.s2.4.

[15]

F. G. Friedlander, Introduction to the Theory of Distributions, Second edition, Cambridge University Press, Cambridge, 1998.

[16]

D. Henry, On the pressure transfer function for solitary water waves with vorticity, Math. Ann., 357 (2013), 23-30. doi: 10.1007/s00208-013-0899-0.

[17]

Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves, Coast. Engng., 23 (1994), 81-93. doi: 10.1016/0378-3839(94)90016-7.

[18]

J. B. Mcleod, The rate of decay of solitary waves of finite amplitude, Appl. Anal., 17 (1983), 37-50. doi: 10.1080/00036818308839482.

[19]

K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918. doi: 10.1137/110853285.

[20]

R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994.

[21]

C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function, Ocean Engng., 32 (2005), 1247-1259. doi: 10.1016/j.oceaneng.2004.10.020.

show all references

References:
[1]

C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude, Arch. Rat. Mech. Anal., 76 (1981), 9-95. doi: 10.1007/BF00250799.

[2]

A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments, Coast. Engng., 24 (1995), 351-353. doi: 10.1016/0378-3839(94)00038-Y.

[3]

C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers, Coast. Engng., 11 (1987), 309-328. doi: 10.1016/0378-3839(87)90031-7.

[4]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-575. doi: 10.1017/jfm.2012.490.

[5]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. doi: 10.1017/jfm.2013.253.

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7.

[8]

A. Constantin, On the particle paths in solitary water waves, Quart. Appl. Math., 68 (2010), 81-90.

[9]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384. doi: 10.1017/jfm.2012.114.

[10]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments, Arch. Rat. Mech. Anal., 201 (2011), 251-269. doi: 10.1007/s00205-011-0396-0.

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Commun. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299.

[12]

W. Craig and P. Sternberg, Symmetry of solitary waves, Commun. Part. Diff. Equ., 13 (1988), 603-633. doi: 10.1080/03605308808820554.

[13]

B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements, in 10th International Conference on Mathematical and Numerical Aspects of Waves, WAVES 2011, Vancouver, 2011.

[14]

J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves, J. Nonlinear Math. Phys., 15 (2008), 50-57. doi: 10.2991/jnmp.2008.15.s2.4.

[15]

F. G. Friedlander, Introduction to the Theory of Distributions, Second edition, Cambridge University Press, Cambridge, 1998.

[16]

D. Henry, On the pressure transfer function for solitary water waves with vorticity, Math. Ann., 357 (2013), 23-30. doi: 10.1007/s00208-013-0899-0.

[17]

Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves, Coast. Engng., 23 (1994), 81-93. doi: 10.1016/0378-3839(94)90016-7.

[18]

J. B. Mcleod, The rate of decay of solitary waves of finite amplitude, Appl. Anal., 17 (1983), 37-50. doi: 10.1080/00036818308839482.

[19]

K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918. doi: 10.1137/110853285.

[20]

R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994.

[21]

C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function, Ocean Engng., 32 (2005), 1247-1259. doi: 10.1016/j.oceaneng.2004.10.020.

[1]

Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022004

[2]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[3]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[4]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[5]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[6]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[7]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[8]

Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 897-907. doi: 10.3934/dcds.2009.24.897

[9]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[10]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419

[11]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[12]

Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132

[13]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159

[14]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[15]

George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

[16]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[17]

Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

[18]

Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4025-4041. doi: 10.3934/cpaa.2021142

[19]

Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[20]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]