August  2014, 34(8): 3035-3043. doi: 10.3934/dcds.2014.34.3035

Recovering surface profiles of solitary waves on a uniform stream from pressure measurements

1. 

Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom

Received  April 2013 Revised  September 2013 Published  January 2014

In this paper, we derive an explicit formula that permits to recover the free surface wave profile of an irrotational solitary wave with a uniform underlying current from pressure data measured at the flat bed of the fluid. The formula is valid for the governing equations and applies to waves of small and large amplitude.
Citation: Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035
References:
[1]

C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude,, Arch. Rat. Mech. Anal., 76 (1981), 9.  doi: 10.1007/BF00250799.  Google Scholar

[2]

A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments,, Coast. Engng., 24 (1995), 351.  doi: 10.1016/0378-3839(94)00038-Y.  Google Scholar

[3]

C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers,, Coast. Engng., 11 (1987), 309.  doi: 10.1016/0378-3839(87)90031-7.  Google Scholar

[4]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463.  doi: 10.1017/jfm.2012.490.  Google Scholar

[5]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements,, J. Fluid Mech., 726 (2013), 547.  doi: 10.1017/jfm.2013.253.  Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[8]

A. Constantin, On the particle paths in solitary water waves,, Quart. Appl. Math., 68 (2010), 81.   Google Scholar

[9]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements,, J. Fluid Mech., 699 (2012), 376.  doi: 10.1017/jfm.2012.114.  Google Scholar

[10]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments,, Arch. Rat. Mech. Anal., 201 (2011), 251.  doi: 10.1007/s00205-011-0396-0.  Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Commun. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[12]

W. Craig and P. Sternberg, Symmetry of solitary waves,, Commun. Part. Diff. Equ., 13 (1988), 603.  doi: 10.1080/03605308808820554.  Google Scholar

[13]

B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements,, in 10th International Conference on Mathematical and Numerical Aspects of Waves, (2011).   Google Scholar

[14]

J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves,, J. Nonlinear Math. Phys., 15 (2008), 50.  doi: 10.2991/jnmp.2008.15.s2.4.  Google Scholar

[15]

F. G. Friedlander, Introduction to the Theory of Distributions,, Second edition, (1998).   Google Scholar

[16]

D. Henry, On the pressure transfer function for solitary water waves with vorticity,, Math. Ann., 357 (2013), 23.  doi: 10.1007/s00208-013-0899-0.  Google Scholar

[17]

Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves,, Coast. Engng., 23 (1994), 81.  doi: 10.1016/0378-3839(94)90016-7.  Google Scholar

[18]

J. B. Mcleod, The rate of decay of solitary waves of finite amplitude,, Appl. Anal., 17 (1983), 37.  doi: 10.1080/00036818308839482.  Google Scholar

[19]

K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements,, SIAM J. Appl. Math., 72 (2012), 897.  doi: 10.1137/110853285.  Google Scholar

[20]

R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms,, Studies in Advanced Mathematics, (1994).   Google Scholar

[21]

C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function,, Ocean Engng., 32 (2005), 1247.  doi: 10.1016/j.oceaneng.2004.10.020.  Google Scholar

show all references

References:
[1]

C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude,, Arch. Rat. Mech. Anal., 76 (1981), 9.  doi: 10.1007/BF00250799.  Google Scholar

[2]

A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments,, Coast. Engng., 24 (1995), 351.  doi: 10.1016/0378-3839(94)00038-Y.  Google Scholar

[3]

C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers,, Coast. Engng., 11 (1987), 309.  doi: 10.1016/0378-3839(87)90031-7.  Google Scholar

[4]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463.  doi: 10.1017/jfm.2012.490.  Google Scholar

[5]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements,, J. Fluid Mech., 726 (2013), 547.  doi: 10.1017/jfm.2013.253.  Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[8]

A. Constantin, On the particle paths in solitary water waves,, Quart. Appl. Math., 68 (2010), 81.   Google Scholar

[9]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements,, J. Fluid Mech., 699 (2012), 376.  doi: 10.1017/jfm.2012.114.  Google Scholar

[10]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments,, Arch. Rat. Mech. Anal., 201 (2011), 251.  doi: 10.1007/s00205-011-0396-0.  Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Commun. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[12]

W. Craig and P. Sternberg, Symmetry of solitary waves,, Commun. Part. Diff. Equ., 13 (1988), 603.  doi: 10.1080/03605308808820554.  Google Scholar

[13]

B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements,, in 10th International Conference on Mathematical and Numerical Aspects of Waves, (2011).   Google Scholar

[14]

J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves,, J. Nonlinear Math. Phys., 15 (2008), 50.  doi: 10.2991/jnmp.2008.15.s2.4.  Google Scholar

[15]

F. G. Friedlander, Introduction to the Theory of Distributions,, Second edition, (1998).   Google Scholar

[16]

D. Henry, On the pressure transfer function for solitary water waves with vorticity,, Math. Ann., 357 (2013), 23.  doi: 10.1007/s00208-013-0899-0.  Google Scholar

[17]

Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves,, Coast. Engng., 23 (1994), 81.  doi: 10.1016/0378-3839(94)90016-7.  Google Scholar

[18]

J. B. Mcleod, The rate of decay of solitary waves of finite amplitude,, Appl. Anal., 17 (1983), 37.  doi: 10.1080/00036818308839482.  Google Scholar

[19]

K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements,, SIAM J. Appl. Math., 72 (2012), 897.  doi: 10.1137/110853285.  Google Scholar

[20]

R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms,, Studies in Advanced Mathematics, (1994).   Google Scholar

[21]

C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function,, Ocean Engng., 32 (2005), 1247.  doi: 10.1016/j.oceaneng.2004.10.020.  Google Scholar

[1]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[2]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[3]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[4]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[5]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[6]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[7]

Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 897-907. doi: 10.3934/dcds.2009.24.897

[8]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419

[9]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[10]

Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132

[11]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159

[12]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[13]

George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems & Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

[14]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[15]

Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

[16]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[17]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[18]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[19]

Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837

[20]

Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems & Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]