-
Previous Article
Particle trajectories in extreme Stokes waves over infinite depth
- DCDS Home
- This Issue
-
Next Article
Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories
On the nature of large and rogue waves
1. | Department of Mathematics, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea |
References:
[1] |
S. Ackerman and M. Coslovich, 2011 Video, in Riptide, November/December, 184, p. 49. Also posted on December 15, 2011, 13:49 at http://www.riptidemag.com.au/. |
[2] |
A. Grawin, 2004 http://www.kohjumonline.com/anders.html. |
[3] |
G. Biondini, K. Maruno, M. Oikawa and H. Tsuji, Soliton interactions of the Kadomtsev-Petviashvili equation and generation of large-amplitude waves, Stud. Appl. Math., 122 (2009), 377-394.
doi: 10.1111/j.1467-9590.2009.00439.x. |
[4] |
H. Chanson, Gallery of photographs, (2010), Also availble at http://staff.civil.uq.edu.au/h.chanson/photo.html#Tidal_bores. |
[5] |
H. Chanson, D. Reungoat, B. Simon and P. Lubin, High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore, in Estuarine, Coastal and Shelf Science, 95 2011, 298-306. Academic Press, Also available at http://espace.library.uq.edu.au/view/UQ:261649. |
[6] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynamics Research, 40 (2008), 175-211.
doi: 10.1016/j.fluiddyn.2007.06.004. |
[7] |
A. Constantin, The trajectories of particles in Stokes waves, Inventiones mathematicae, 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[8] |
A. Constantin and J. Escher, Particle trajectories in shallow water waves, Bulletin of the American Mathematical Society, 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[9] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Communications in Pure and Applied Mathematics, 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[10] |
B. V. Divinsky, B. V. Levin, L. I. Lopatikhin, E. N. Pelinovsky and A. V. Slyungaev, A freak wave in the Black sea: Observations and simulation, Doklady, Earth Science, 395 (2004), 438-443. |
[11] |
W. Dudley and M. Lee, Tsunami, 2nd edition, page 97, University of Hawaii Press, 1998. |
[12] |
M. D. Earle, Extreme wave conditions during Hurricane Camille, Journal of Geophysical Research, 80 (1975), 377-379. |
[13] |
K. Freeze, Monster waves threaten rescue helicopters, in Proceedings of US Naval Institute, vol. 132/11/1, pp. 246-247. US Naval Institute, Annapolis, Mariland, Also available at http://www.check-six.com/Coast_Guard/Monster_Waves_Reprint-screen.pdf. |
[14] |
D. M. Graham, NOAA vessel swamped by rogue wave, 284 (2000). The quote may also be found at http://hal.archives-ouvertes.fr/docs/00/00/03/52/PDF/Rogue_wave_V1.pdf, bottom of page 4. |
[15] |
Y. S. Gutshabash and I. V. Lavrenov, Swell transformation in the Cape Agulhas current, Izvestiya, Atmospheric and Oceanic Physics, 22 (1986), 494-497. |
[16] |
D. E. Irvine and D. G. Tilley, Ocean wave directional spectra and wave-current interaction in the Agulhas from the shuttle imaging radar-B synthetic aperture radar, Journal of Geophysical Research, 93 (1988), 15389-15401. |
[17] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Univ. Press, Cambridge, 1988.
doi: 10.1017/CBO9780511624056. |
[18] |
B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl, 15 (1970), 539-541. |
[19] |
M. Kovalyov and I. Bica, Some properties of slowly decaying oscillatory solutions of KP, Chaos, Solitons and Fractals, 25 (2005), 1979-1989.
doi: 10.1016/j.chaos.2004.11.054. |
[20] |
K. Mallory, Abnormal waves on the south-east of South Africa, Inst. Hydrog. Rev., 51 (1974), 89-129. |
[21] |
M. Maxted, Photo, in Riptide, 176 2010, 88-89. Also posted on June 15, 2010, 13:43 at http://www.riptidemag.com.au/. |
[22] |
N. Mori, P. C. Liun and T. Yasuda, Analysis of freak wave measurements in the sea of Japan, Ocean Engineering, 29 (2002), 1399-1414. |
[23] |
D. Mouaze, H. Chanson and B. Simon, Field Measurements in the tidal bore of the Selune River in the Bay of Mont Saint Michel (September 2010), in Hydraulic Model Report No. CH81/10, 2010, pp. 246-247. School of Civil Engineering, The University of Queensland, Brisbane, Australia. |
[24] |
P. Peterson, T. Soomere, J. Engelbreight and E. van Groesen, Soliton interaction as a possible model for extreme waves in shallow water, Nonlin. Proc. Geophys, 10 (2003), 503-510. |
[25] |
C. Rip, Tip 2 Tip - Seven Ghosts, 2011, http://www.youtube.com/watch?v=2_vmS-bCoNU, time marks 1:21 and 1:25. |
[26] |
Riptide, Riptide Internet journal, 2010, http://www.riptidemag.com.au/. |
[27] |
J. H. Simpson, N. R. Fisher and P. Wiles, Reynolds stress and TKE production in an estuary with a tidal bore, Estuarine, Coastal and Shelf Science, 60 (2004), 619-627. |
[28] |
Videos, http://www.youtube.com/watch?v=AC2UXYK65Tc&feature=related, 2010, http://www.youtube.com/watch?feature=endscreen&NR=1&v=tmOc0RbMu5k, http://www.youtube.com/watch?v=gucywjswwZc&feature=related, http://globalwarming-arclein.blogspot.com/2010/11/6-foot-waves-hit-new-york-in-ancient.html. |
[29] |
E. Wolanski, D. Williams, S. Spagnol and H. Chanson, Undular tidal bore dynamics in the daly estuary, Estuarine, Coastal and Shelf Science, 60 (2004), 629-636.
doi: 10.1016/j.ecss.2004.03.001. |
show all references
References:
[1] |
S. Ackerman and M. Coslovich, 2011 Video, in Riptide, November/December, 184, p. 49. Also posted on December 15, 2011, 13:49 at http://www.riptidemag.com.au/. |
[2] |
A. Grawin, 2004 http://www.kohjumonline.com/anders.html. |
[3] |
G. Biondini, K. Maruno, M. Oikawa and H. Tsuji, Soliton interactions of the Kadomtsev-Petviashvili equation and generation of large-amplitude waves, Stud. Appl. Math., 122 (2009), 377-394.
doi: 10.1111/j.1467-9590.2009.00439.x. |
[4] |
H. Chanson, Gallery of photographs, (2010), Also availble at http://staff.civil.uq.edu.au/h.chanson/photo.html#Tidal_bores. |
[5] |
H. Chanson, D. Reungoat, B. Simon and P. Lubin, High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore, in Estuarine, Coastal and Shelf Science, 95 2011, 298-306. Academic Press, Also available at http://espace.library.uq.edu.au/view/UQ:261649. |
[6] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynamics Research, 40 (2008), 175-211.
doi: 10.1016/j.fluiddyn.2007.06.004. |
[7] |
A. Constantin, The trajectories of particles in Stokes waves, Inventiones mathematicae, 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[8] |
A. Constantin and J. Escher, Particle trajectories in shallow water waves, Bulletin of the American Mathematical Society, 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[9] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Communications in Pure and Applied Mathematics, 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[10] |
B. V. Divinsky, B. V. Levin, L. I. Lopatikhin, E. N. Pelinovsky and A. V. Slyungaev, A freak wave in the Black sea: Observations and simulation, Doklady, Earth Science, 395 (2004), 438-443. |
[11] |
W. Dudley and M. Lee, Tsunami, 2nd edition, page 97, University of Hawaii Press, 1998. |
[12] |
M. D. Earle, Extreme wave conditions during Hurricane Camille, Journal of Geophysical Research, 80 (1975), 377-379. |
[13] |
K. Freeze, Monster waves threaten rescue helicopters, in Proceedings of US Naval Institute, vol. 132/11/1, pp. 246-247. US Naval Institute, Annapolis, Mariland, Also available at http://www.check-six.com/Coast_Guard/Monster_Waves_Reprint-screen.pdf. |
[14] |
D. M. Graham, NOAA vessel swamped by rogue wave, 284 (2000). The quote may also be found at http://hal.archives-ouvertes.fr/docs/00/00/03/52/PDF/Rogue_wave_V1.pdf, bottom of page 4. |
[15] |
Y. S. Gutshabash and I. V. Lavrenov, Swell transformation in the Cape Agulhas current, Izvestiya, Atmospheric and Oceanic Physics, 22 (1986), 494-497. |
[16] |
D. E. Irvine and D. G. Tilley, Ocean wave directional spectra and wave-current interaction in the Agulhas from the shuttle imaging radar-B synthetic aperture radar, Journal of Geophysical Research, 93 (1988), 15389-15401. |
[17] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Univ. Press, Cambridge, 1988.
doi: 10.1017/CBO9780511624056. |
[18] |
B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl, 15 (1970), 539-541. |
[19] |
M. Kovalyov and I. Bica, Some properties of slowly decaying oscillatory solutions of KP, Chaos, Solitons and Fractals, 25 (2005), 1979-1989.
doi: 10.1016/j.chaos.2004.11.054. |
[20] |
K. Mallory, Abnormal waves on the south-east of South Africa, Inst. Hydrog. Rev., 51 (1974), 89-129. |
[21] |
M. Maxted, Photo, in Riptide, 176 2010, 88-89. Also posted on June 15, 2010, 13:43 at http://www.riptidemag.com.au/. |
[22] |
N. Mori, P. C. Liun and T. Yasuda, Analysis of freak wave measurements in the sea of Japan, Ocean Engineering, 29 (2002), 1399-1414. |
[23] |
D. Mouaze, H. Chanson and B. Simon, Field Measurements in the tidal bore of the Selune River in the Bay of Mont Saint Michel (September 2010), in Hydraulic Model Report No. CH81/10, 2010, pp. 246-247. School of Civil Engineering, The University of Queensland, Brisbane, Australia. |
[24] |
P. Peterson, T. Soomere, J. Engelbreight and E. van Groesen, Soliton interaction as a possible model for extreme waves in shallow water, Nonlin. Proc. Geophys, 10 (2003), 503-510. |
[25] |
C. Rip, Tip 2 Tip - Seven Ghosts, 2011, http://www.youtube.com/watch?v=2_vmS-bCoNU, time marks 1:21 and 1:25. |
[26] |
Riptide, Riptide Internet journal, 2010, http://www.riptidemag.com.au/. |
[27] |
J. H. Simpson, N. R. Fisher and P. Wiles, Reynolds stress and TKE production in an estuary with a tidal bore, Estuarine, Coastal and Shelf Science, 60 (2004), 619-627. |
[28] |
Videos, http://www.youtube.com/watch?v=AC2UXYK65Tc&feature=related, 2010, http://www.youtube.com/watch?feature=endscreen&NR=1&v=tmOc0RbMu5k, http://www.youtube.com/watch?v=gucywjswwZc&feature=related, http://globalwarming-arclein.blogspot.com/2010/11/6-foot-waves-hit-new-york-in-ancient.html. |
[29] |
E. Wolanski, D. Williams, S. Spagnol and H. Chanson, Undular tidal bore dynamics in the daly estuary, Estuarine, Coastal and Shelf Science, 60 (2004), 629-636.
doi: 10.1016/j.ecss.2004.03.001. |
[1] |
Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059 |
[2] |
Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835 |
[3] |
Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155 |
[4] |
Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 887-905. doi: 10.3934/cpaa.2006.5.887 |
[5] |
Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483 |
[6] |
Pedro Isaza, Jorge Mejía. On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1239-1255. doi: 10.3934/cpaa.2011.10.1239 |
[7] |
Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078 |
[8] |
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097 |
[9] |
Jiaxiang Cai, Juan Chen, Min Chen. Efficient linearized local energy-preserving method for the Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2441-2453. doi: 10.3934/dcdsb.2021139 |
[10] |
Anahita Eslami Rad, Enrique G. Reyes. The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups. Journal of Geometric Mechanics, 2013, 5 (3) : 345-364. doi: 10.3934/jgm.2013.5.345 |
[11] |
Christian Klein, Ralf Peter. Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1689-1717. doi: 10.3934/dcdsb.2014.19.1689 |
[12] |
Roger P. de Moura, Ailton C. Nascimento, Gleison N. Santos. On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping. Evolution Equations and Control Theory, 2022, 11 (3) : 711-727. doi: 10.3934/eect.2021022 |
[13] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 |
[14] |
Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022070 |
[15] |
Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729 |
[16] |
Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729 |
[17] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[18] |
Joseph Thirouin. Classification of traveling waves for a quadratic Szegő equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3099-3122. doi: 10.3934/dcds.2019128 |
[19] |
Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067 |
[20] |
Lina Guo, Yulin Zhao. Existence of periodic waves for a perturbed quintic BBM equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4689-4703. doi: 10.3934/dcds.2020198 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]