Citation: |
[1] |
C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.doi: 10.1007/BF02392728. |
[2] |
C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long wave limit, Philos. Trans. R. Soc. Lond. A, 303 (1981), 633-669.doi: 10.1098/rsta.1981.0231. |
[3] |
B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation. An Introduction, Princeton University Press, Princeton, NJ, 2003. |
[4] |
R. B. Burckel, An Introduction to Classical Complex Analysis, New York-London Acadenic Press, Inc., 1979. |
[5] |
A. Constantin, On deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.doi: 10.1088/0305-4470/34/7/313. |
[6] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[7] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference in Applied Mathematics 81. 2011, Philadelphia: SIAM.doi: 10.1137/1.9781611971873. |
[8] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.doi: 10.1093/imamat/hxs033. |
[9] |
A. Constantin, Mean velocities in a Stokes wave, Arch. Ration. Mech. Anal., 207 (2013), 907-917.doi: 10.1007/s00205-012-0584-6. |
[10] |
A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves, Nonl. Anal.-Real World Appl., 9 (2008), 1336-1344.doi: 10.1016/j.nonrwa.2007.03.003. |
[11] |
A. Constantin and J. Escher, Symmetry of deep-water waves with vorticity, Eur. J. App. Math., 15 (2004), 755-768.doi: 10.1017/S0956792504005777. |
[12] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431 (electronic).doi: 10.1090/S0273-0979-07-01159-7. |
[13] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12. |
[14] |
A. Constantin and W. Strauss, Pressure beneath a Stokes Wave, Comm. Pure Appl. Math., 63 (2010), 533-557.doi: 10.1002/cpa.20299. |
[15] |
A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-77.doi: 10.1007/s00205-010-0314-x. |
[16] |
A. Constantin and G. Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech., 10 (2008), 1-18.doi: 10.1007/s00021-005-0214-2. |
[17] |
M. Ehrnström, On the streamlines and particle paths of gravitational waves, Nonlinearity, 21 (2008), 1141-1154.doi: 10.1088/0951-7715/21/5/012. |
[18] |
L. C. Evans, Partial Differential Equations-2nd ed., AMS Graduate Studies in Mathematics, 19, 2010. |
[19] |
L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge University Press, 2000.doi: 10.1017/CBO9780511569203. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 2001. |
[21] |
D. Henry, The trajectories of particles in deep water Stokes waves, Int. Math. Res. Not., 2006 (2006), 1-13.doi: 10.1155/IMRN/2006/23405. |
[22] |
D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity water waves, Phil. Trans. R. Soc. A, 365 (2007), 2241-2251doi: 10.1098/rsta.2007.2005. |
[23] |
D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves, J. Nonlin. Math. Phys., 14 (2007), 1-7.doi: 10.2991/jnmp.2007.14.1.1. |
[24] |
D. Henry, On the deep-water Stokes wave flow, Int. Math. Res. Not., 2008 (2008), 1-7.doi: 10.1093/imrn/rnn071. |
[25] |
D. Henry, Pressure in a deep-water Stokes wave, J. Math. Fluid. Mech., 13 (2011), 251-257.doi: 10.1007/s00021-009-0015-0. |
[26] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.doi: 10.1017/CBO9780511624056. |
[27] |
P. I. Plotnikov and J. F. Toland, Convexity of Stokes waves of extreme form, Arch. Ration. Mech. Anal., 171 (2004), 349-416.doi: 10.1007/s00205-003-0292-3. |
[28] |
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Berlin: Srpringer, 1992. |
[29] |
Ch. Pommerenke., Conformal Maps at the Boundary, in Handbook of Complex Analysis: Geometric Function Theory, 1, Amsterdam: North-Holland, 2002.doi: 10.1016/S1874-5709(02)80004-X. |
[30] |
G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change in form, in Math. and Phys. Papers, I, Cambridge, 1880, 225-228. |
[31] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (2006), 1-48. |
[32] |
E. Varvaruca, Some geometric and analytic properties of solutions of Bernoulli free-boundary problems, Interfaces Free Bound., 9 (2007), 367-381.doi: 10.4171/IFB/169. |
[33] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, New York: Springer, 1989.doi: 10.1007/978-1-4612-1015-3. |