August  2014, 34(8): 3109-3123. doi: 10.3934/dcds.2014.34.3109

Dispersion relations for periodic water waves with surface tension and discontinuous vorticity

1. 

Institut für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria

Received  August 2013 Revised  September 2013 Published  January 2014

We derive the dispersion relation for water waves with surface tension and having a piecewise constant vorticity distribution. More precisely, we consider here two scenarios; the first one is that of a flow with constant non-zero vorticity adjacent to the flat bed while above this layer of vorticity we assume the flow to be irrotational. The second type of flow has a layer of non-vanishing vorticity adjacent to the free surface and is irrotational below.
Citation: Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109
References:
[1]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463.  doi: 10.1017/jfm.2012.490.  Google Scholar

[2]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[3]

A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis,, 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, 81 (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[4]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity,, Commun. Pure Appl. Anal., 11 (2012), 1397.  doi: 10.3934/cpaa.2012.11.1397.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171.  doi: 10.1017/S0022112003006773.  Google Scholar

[8]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[9]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[10]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[11]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity,, Comm. Pure Appl. Math., 60 (2007), 911.  doi: 10.1002/cpa.20165.  Google Scholar

[13]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Ration. Mech. Anal., 199 (2011), 33.  doi: 10.1007/s00205-010-0314-x.  Google Scholar

[14]

M. Ehrnström, J. Escher and E. Wahlén, Steady water waves with multiple critical layers,, SIAM J. Math. Anal., 43 (2011), 1436.  doi: 10.1137/100792330.  Google Scholar

[15]

J. Escher, Regularity of rotational travelling water waves,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602.  doi: 10.1098/rsta.2011.0458.  Google Scholar

[16]

J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points,, J. Differential Equations, 251 (2011), 2932.  doi: 10.1016/j.jde.2011.03.023.  Google Scholar

[17]

D. Henry, Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity,, SIAM J. Math. Anal, 42 (2010), 3103.  doi: 10.1137/100801408.  Google Scholar

[18]

D. Henry, Analyticity of the free surface for periodic travelling capillary-gravity water waves with vorticity,, J. Math. Fluid Mech., 14 (2012), 249.  doi: 10.1007/s00021-011-0056-z.  Google Scholar

[19]

D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface,, Nonlinear Anal. Real World Appl., 14 (2013), 1034.  doi: 10.1016/j.nonrwa.2012.08.015.  Google Scholar

[20]

D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves,, Commun. Pure Appl. Anal., 11 (2012), 1453.  doi: 10.3934/cpaa.2012.11.1453.  Google Scholar

[21]

R. S. Johnson, A modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Texts in Applied Mathematics, (1997).  doi: 10.1017/CBO9780511624056.  Google Scholar

[22]

I. G. Jonsson, Wave-current interactions. In: The Sea ,, Wiley, (1990).   Google Scholar

[23]

J. Lighthill, Waves in Fluids,, Cambridge Mathematical Library, (2001).  doi: 10.1007/s002050100160.  Google Scholar

[24]

C. I. Martin, Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity,, Nonlinear Anal. Real World Appl., 14 (2013), 131.  doi: 10.1016/j.nonrwa.2012.05.007.  Google Scholar

[25]

C. I. Martin, Local bifurcation for steady periodic capillary water waves with constant vorticity,, J. Math. Fluid Mech., 15 (2013), 155.  doi: 10.1007/s00021-012-0096-z.  Google Scholar

[26]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity,, , ().   Google Scholar

[27]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity,, Differential Integral Equations, 26 (2013), 129.   Google Scholar

[28]

B.-V. Matioc, Analyticity of the streamlines for periodic traveling water waves with bounded vorticity,, Int. Math. Res. Not., 17 (2011), 3858.  doi: 10.1093/imrn/rnq235.  Google Scholar

[29]

G. Thomas and G. Klopman, Wave-Current Interactions in the Nearshore Region,, WIT, (1997).   Google Scholar

[30]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[31]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity,, SIAM J. Math. Anal., 38 (2006), 921.  doi: 10.1137/050630465.  Google Scholar

[32]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468.  doi: 10.1016/j.jde.2008.10.005.  Google Scholar

[33]

S. Walsh, Stratified steady periodic water waves,, SIAM J. Math. Anal., 41 (2009), 1054.  doi: 10.1137/080721583.  Google Scholar

[34]

L.-J. Wang, Regularity of traveling periodic stratified water waves with vorticity,, Nonlinear Anal., 81 (2013), 247.  doi: 10.1016/j.na.2012.11.009.  Google Scholar

show all references

References:
[1]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463.  doi: 10.1017/jfm.2012.490.  Google Scholar

[2]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[3]

A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis,, 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, 81 (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[4]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity,, Commun. Pure Appl. Anal., 11 (2012), 1397.  doi: 10.3934/cpaa.2012.11.1397.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171.  doi: 10.1017/S0022112003006773.  Google Scholar

[8]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[9]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[10]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[11]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity,, Comm. Pure Appl. Math., 60 (2007), 911.  doi: 10.1002/cpa.20165.  Google Scholar

[13]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Ration. Mech. Anal., 199 (2011), 33.  doi: 10.1007/s00205-010-0314-x.  Google Scholar

[14]

M. Ehrnström, J. Escher and E. Wahlén, Steady water waves with multiple critical layers,, SIAM J. Math. Anal., 43 (2011), 1436.  doi: 10.1137/100792330.  Google Scholar

[15]

J. Escher, Regularity of rotational travelling water waves,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602.  doi: 10.1098/rsta.2011.0458.  Google Scholar

[16]

J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points,, J. Differential Equations, 251 (2011), 2932.  doi: 10.1016/j.jde.2011.03.023.  Google Scholar

[17]

D. Henry, Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity,, SIAM J. Math. Anal, 42 (2010), 3103.  doi: 10.1137/100801408.  Google Scholar

[18]

D. Henry, Analyticity of the free surface for periodic travelling capillary-gravity water waves with vorticity,, J. Math. Fluid Mech., 14 (2012), 249.  doi: 10.1007/s00021-011-0056-z.  Google Scholar

[19]

D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface,, Nonlinear Anal. Real World Appl., 14 (2013), 1034.  doi: 10.1016/j.nonrwa.2012.08.015.  Google Scholar

[20]

D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves,, Commun. Pure Appl. Anal., 11 (2012), 1453.  doi: 10.3934/cpaa.2012.11.1453.  Google Scholar

[21]

R. S. Johnson, A modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Texts in Applied Mathematics, (1997).  doi: 10.1017/CBO9780511624056.  Google Scholar

[22]

I. G. Jonsson, Wave-current interactions. In: The Sea ,, Wiley, (1990).   Google Scholar

[23]

J. Lighthill, Waves in Fluids,, Cambridge Mathematical Library, (2001).  doi: 10.1007/s002050100160.  Google Scholar

[24]

C. I. Martin, Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity,, Nonlinear Anal. Real World Appl., 14 (2013), 131.  doi: 10.1016/j.nonrwa.2012.05.007.  Google Scholar

[25]

C. I. Martin, Local bifurcation for steady periodic capillary water waves with constant vorticity,, J. Math. Fluid Mech., 15 (2013), 155.  doi: 10.1007/s00021-012-0096-z.  Google Scholar

[26]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity,, , ().   Google Scholar

[27]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity,, Differential Integral Equations, 26 (2013), 129.   Google Scholar

[28]

B.-V. Matioc, Analyticity of the streamlines for periodic traveling water waves with bounded vorticity,, Int. Math. Res. Not., 17 (2011), 3858.  doi: 10.1093/imrn/rnq235.  Google Scholar

[29]

G. Thomas and G. Klopman, Wave-Current Interactions in the Nearshore Region,, WIT, (1997).   Google Scholar

[30]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[31]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity,, SIAM J. Math. Anal., 38 (2006), 921.  doi: 10.1137/050630465.  Google Scholar

[32]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468.  doi: 10.1016/j.jde.2008.10.005.  Google Scholar

[33]

S. Walsh, Stratified steady periodic water waves,, SIAM J. Math. Anal., 41 (2009), 1054.  doi: 10.1137/080721583.  Google Scholar

[34]

L.-J. Wang, Regularity of traveling periodic stratified water waves with vorticity,, Nonlinear Anal., 81 (2013), 247.  doi: 10.1016/j.na.2012.11.009.  Google Scholar

[1]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[2]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[3]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

[4]

Frédéric Rousset, Nikolay Tzvetkov. On the transverse instability of one dimensional capillary-gravity waves. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 859-872. doi: 10.3934/dcdsb.2010.13.859

[5]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[6]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[7]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[8]

Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915

[9]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[10]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[11]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[12]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[13]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[14]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[15]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[16]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[17]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[18]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[19]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[20]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]