\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dispersion relations for periodic water waves with surface tension and discontinuous vorticity

Abstract / Introduction Related Papers Cited by
  • We derive the dispersion relation for water waves with surface tension and having a piecewise constant vorticity distribution. More precisely, we consider here two scenarios; the first one is that of a flow with constant non-zero vorticity adjacent to the flat bed while above this layer of vorticity we assume the flow to be irrotational. The second type of flow has a layer of non-vanishing vorticity adjacent to the free surface and is irrotational below.
    Mathematics Subject Classification: Primary: 35Q31, 35Q35, 76D33, 76D45; Secondary: 12D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.doi: 10.1017/jfm.2012.490.

    [2]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [3]

    A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2011).doi: 10.1137/1.9781611971873.

    [4]

    A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406.doi: 10.3934/cpaa.2012.11.1397.

    [5]

    A. Constantin, Mean velocities in a Stokes wave, Arch. Ration. Mech. Anal., 207 (2013), 907-917.doi: 10.1007/s00205-012-0584-6.

    [6]

    A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1.

    [7]

    A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.doi: 10.1017/S0022112003006773.

    [8]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [9]

    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.doi: 10.1002/cpa.3046.

    [10]

    A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.doi: 10.1002/cpa.20299.

    [11]

    A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.doi: 10.1007/s00205-011-0412-4.

    [12]

    A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007), 911-950.doi: 10.1002/cpa.20165.

    [13]

    A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.doi: 10.1007/s00205-010-0314-x.

    [14]

    M. Ehrnström, J. Escher and E. Wahlén, Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.doi: 10.1137/100792330.

    [15]

    J. Escher, Regularity of rotational travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602-1615.doi: 10.1098/rsta.2011.0458.

    [16]

    J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949.doi: 10.1016/j.jde.2011.03.023.

    [17]

    D. Henry, Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity, SIAM J. Math. Anal, 42 (2010), 3103-3111.doi: 10.1137/100801408.

    [18]

    D. Henry, Analyticity of the free surface for periodic travelling capillary-gravity water waves with vorticity, J. Math. Fluid Mech., 14 (2012), 249-254.doi: 10.1007/s00021-011-0056-z.

    [19]

    D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043.doi: 10.1016/j.nonrwa.2012.08.015.

    [20]

    D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves, Commun. Pure Appl. Anal., 11 (2012), 1453-1464.doi: 10.3934/cpaa.2012.11.1453.

    [21]

    R. S. Johnson, A modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997.doi: 10.1017/CBO9780511624056.

    [22]

    I. G. Jonsson, Wave-current interactions. In: The Sea , Wiley, New York, 1990.

    [23]

    J. Lighthill, Waves in Fluids, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2001, Reprint of the 1978 original.doi: 10.1007/s002050100160.

    [24]

    C. I. Martin, Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity, Nonlinear Anal. Real World Appl., 14 (2013), 131-149.doi: 10.1016/j.nonrwa.2012.05.007.

    [25]

    C. I. Martin, Local bifurcation for steady periodic capillary water waves with constant vorticity, J. Math. Fluid Mech., 15 (2013), 155-170.doi: 10.1007/s00021-012-0096-z.

    [26]

    C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, arXiv:1302.5523.

    [27]

    A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity, Differential Integral Equations, 26 (2013), 129-140.

    [28]

    B.-V. Matioc, Analyticity of the streamlines for periodic traveling water waves with bounded vorticity, Int. Math. Res. Not., 17 (2011), 3858-3871.doi: 10.1093/imrn/rnq235.

    [29]

    G. Thomas and G. Klopman, Wave-Current Interactions in the Nearshore Region, WIT, Southampton, United Kingdom, 1997.

    [30]

    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

    [31]

    E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943 (electronic).doi: 10.1137/050630465.

    [32]

    E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.doi: 10.1016/j.jde.2008.10.005.

    [33]

    S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.doi: 10.1137/080721583.

    [34]

    L.-J. Wang, Regularity of traveling periodic stratified water waves with vorticity, Nonlinear Anal., 81 (2013), 247-263.doi: 10.1016/j.na.2012.11.009.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return