August  2014, 34(8): 3125-3133. doi: 10.3934/dcds.2014.34.3125

A characterization of the symmetric steady water waves in terms of the underlying flow

1. 

University of Vienna, Nordbergstraße 15, 1090, Vienna, Austria

Received  April 2013 Revised  September 2013 Published  January 2014

In this paper we present a characterization of the symmetric rotational periodic gravity water waves of finite depth and without stagnation points in terms of the underlying flow. Namely, we show that such a wave is symmetric and has a single crest and trough per period if and only if there exists a vertical line within the fluid domain such that all the fluid particles located on that line minimize there simultaneously their distance to the fluid bed as they move about. Our analysis uses the moving plane method, sharp elliptic maximum principles, and the principle of analytic continuation.
Citation: Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125
References:
[1]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. Phys., 5 (1988), 237. doi: 10.1016/0393-0440(88)90006-X. Google Scholar

[2]

A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313. Google Scholar

[3]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873. Google Scholar

[4]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. doi: 10.1215/S0012-7094-07-14034-1. Google Scholar

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171. doi: 10.1017/S0022112003006773. Google Scholar

[6]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity,, European J. Appl. Math., 15 (2004), 755. doi: 10.1017/S0956792504005777. Google Scholar

[7]

A. Constantin and J. Escher, Analyticity of periodic travelling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[8]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046. Google Scholar

[9]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4. Google Scholar

[10]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x. Google Scholar

[11]

W. Craig and P. Sternberg, Symmetry of solitary waves,, Comm. Partial Differential Equations, 13 (1988), 603. doi: 10.1080/03605308808820554. Google Scholar

[12]

J. Escher and B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function,, Differential Integral Equations, (). Google Scholar

[13]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (2001). Google Scholar

[15]

D. Henry, On Gerstner's water wave,, J. Nonlinear Math. Phys., 15 (2008), 87. doi: 10.2991/jnmp.2008.15.S2.7. Google Scholar

[16]

V. M. Hur, Symmetry of solitary water waves with vorticity,, Math. Res. Lett., 15 (2008), 491. doi: 10.4310/MRL.2008.v15.n3.a9. Google Scholar

[17]

V. M. Hur, Symmetry of steady periodic water waves with vorticity,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2203. doi: 10.1098/rsta.2007.2002. Google Scholar

[18]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Univ. Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[19]

B. Kinsman, Wind Waves,, Prentice Hall, (1965). doi: 10.1029/JZ066i008p02411. Google Scholar

[20]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity,, Differential Integral Equations, 26 (2013), 129. Google Scholar

[21]

A.-V. Matioc and B.-V. Matioc, Regularity and symmetry properties of rotational solitary water waves,, J. Evol. Equ., 12 (2012), 481. doi: 10.1007/s00028-012-0141-7. Google Scholar

[22]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. Google Scholar

[23]

P. R. Garabedian, Surface waves of finite depth,, J. Anal. Math., 14 (1965), 161. doi: 10.1007/BF02806385. Google Scholar

[24]

J. F. Toland, On the symmetry theory for Stokes waves of finite and infinite depth,, in Trends in applications of mathematics to mechanics (Nice, (1998), 207. Google Scholar

[25]

G. Tulzer, On the symmetry of steady periodic water waves with stagnation points,, Commun. Pure Appl. Anal., 11 (2012), 1577. doi: 10.3934/cpaa.2012.11.1577. Google Scholar

[26]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, Adv. Ser. Nonlinear Dynam., (2001). Google Scholar

[27]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468. doi: 10.1016/j.jde.2008.10.005. Google Scholar

[28]

S. Walsh, Some criteria for the symmetry of stratified water waves,, Wave Motion, 46 (2009), 350. doi: 10.1016/j.wavemoti.2009.06.008. Google Scholar

show all references

References:
[1]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations,, J. Geom. Phys., 5 (1988), 237. doi: 10.1016/0393-0440(88)90006-X. Google Scholar

[2]

A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313. Google Scholar

[3]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873. Google Scholar

[4]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. doi: 10.1215/S0012-7094-07-14034-1. Google Scholar

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171. doi: 10.1017/S0022112003006773. Google Scholar

[6]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity,, European J. Appl. Math., 15 (2004), 755. doi: 10.1017/S0956792504005777. Google Scholar

[7]

A. Constantin and J. Escher, Analyticity of periodic travelling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[8]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046. Google Scholar

[9]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4. Google Scholar

[10]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x. Google Scholar

[11]

W. Craig and P. Sternberg, Symmetry of solitary waves,, Comm. Partial Differential Equations, 13 (1988), 603. doi: 10.1080/03605308808820554. Google Scholar

[12]

J. Escher and B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function,, Differential Integral Equations, (). Google Scholar

[13]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (2001). Google Scholar

[15]

D. Henry, On Gerstner's water wave,, J. Nonlinear Math. Phys., 15 (2008), 87. doi: 10.2991/jnmp.2008.15.S2.7. Google Scholar

[16]

V. M. Hur, Symmetry of solitary water waves with vorticity,, Math. Res. Lett., 15 (2008), 491. doi: 10.4310/MRL.2008.v15.n3.a9. Google Scholar

[17]

V. M. Hur, Symmetry of steady periodic water waves with vorticity,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2203. doi: 10.1098/rsta.2007.2002. Google Scholar

[18]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Univ. Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[19]

B. Kinsman, Wind Waves,, Prentice Hall, (1965). doi: 10.1029/JZ066i008p02411. Google Scholar

[20]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity,, Differential Integral Equations, 26 (2013), 129. Google Scholar

[21]

A.-V. Matioc and B.-V. Matioc, Regularity and symmetry properties of rotational solitary water waves,, J. Evol. Equ., 12 (2012), 481. doi: 10.1007/s00028-012-0141-7. Google Scholar

[22]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. Google Scholar

[23]

P. R. Garabedian, Surface waves of finite depth,, J. Anal. Math., 14 (1965), 161. doi: 10.1007/BF02806385. Google Scholar

[24]

J. F. Toland, On the symmetry theory for Stokes waves of finite and infinite depth,, in Trends in applications of mathematics to mechanics (Nice, (1998), 207. Google Scholar

[25]

G. Tulzer, On the symmetry of steady periodic water waves with stagnation points,, Commun. Pure Appl. Anal., 11 (2012), 1577. doi: 10.3934/cpaa.2012.11.1577. Google Scholar

[26]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, Adv. Ser. Nonlinear Dynam., (2001). Google Scholar

[27]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468. doi: 10.1016/j.jde.2008.10.005. Google Scholar

[28]

S. Walsh, Some criteria for the symmetry of stratified water waves,, Wave Motion, 46 (2009), 350. doi: 10.1016/j.wavemoti.2009.06.008. Google Scholar

[1]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

[2]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[3]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[4]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[5]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

[6]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[7]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[8]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[9]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[10]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[11]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[12]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[13]

R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237

[14]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[15]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[16]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[17]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[18]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[19]

Frédéric Rousset, Nikolay Tzvetkov. On the transverse instability of one dimensional capillary-gravity waves. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 859-872. doi: 10.3934/dcdsb.2010.13.859

[20]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]