Citation: |
[1] |
D. P. Bertsekas, Nonlinear Programming, $2^{nd}$ edition, Athena Scientific, Belmont, Massachusetts, 1999.doi: 10.1038/sj.jors.2600425. |
[2] |
H.-K. Chang, Y.-Y. Chen and J.-C. Liou, Particle trajectories of nonlinear gravity waves in deep water, Ocean Engineering, 36 (2009), 324-329.doi: 10.1016/j.oceaneng.2008.12.007. |
[3] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[4] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, SIAM, 2011.doi: 10.1137/1.9781611971873. |
[5] |
A. Constantin, Mean velocities in a Stokes wave, Arch. Ration. Mech. Anal., 207 (2013), 907-917.doi: 10.1007/s00205-012-0584-6. |
[6] |
A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1. |
[7] |
A. Constantin, M. Ehrnström and E. Wahlén, Particle trajectories in linear deep-water waves, Nonlinear Anal. Real World Appl., 9 (2008), 1-18.doi: 10.1016/j.nonrwa.2007.03.003. |
[8] |
A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.doi: 10.1002/cpa.20299. |
[9] |
A. Constantin and G. Villari, Particle trajectories in linear water waves, J. Math. Fulid Mech., 10 (2008), 1336-1344.doi: 10.1007/s00021-005-0214-2. |
[10] |
M. W. Dingemans, Water Waves Propagation Over Uneven Bottoms, World Scientific, Singapore, 1997.doi: 10.1142/1241-part1. |
[11] |
J. D. Fenton, A fifth-order Stokes theory for steady waves, Journal of Waterway, Port, Coastal and Ocean Engineering, 111 (1985), 216-234.doi: 10.1061/(ASCE)0733-950X(1985)111:2(216). |
[12] |
J. D. Fenton, Nonlinear wave theories, The Sea: Ocean Engineering Science, 9 (1990), 1-18. |
[13] |
P. Guidotti, A new first-kind boundary integral formulation for the Dirichlet-to-Neumman map in 2D, J. Comput. Phy., 190 (2008), 325-345.doi: 10.1016/S0021-9991(03)00277-8. |
[14] |
D. Henry, On the deep-water Stokes wave flow, IMRN, 2008 (2008), 1-7.doi: 10.1093/imrn/rnn071. |
[15] |
M. Isobe, H. Nishimura and K. Horikawa, Expressions of Pertubation Solutions for Conservative Waves by Using Wave Height, Proceedings of 33rd annual conference of JSCE 1978, 760-761. |
[16] |
F. John, Partial Differential Equations, $4^{th}$ edition, Springer-Verlag, New York, 1982. |
[17] |
I. G. Jonsson and L. Arneborg, Energy properties and shoaling of higher-order stokes waves on current, Ocean Engineering, 22 (1995), 819-857.doi: 10.1016/0029-8018(95)00008-9. |
[18] | |
[19] |
M. S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves, J. Fluid Mech., 173 (1986), 683-707.doi: 10.1017/S0022112086001325. |
[20] |
Available at: http://w3.impa.br/~nachbin/AndreNachbin/Stokes_Waves.html. |
[21] |
H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves, World Scientific, River Edge, NJ, 2001. |
[22] |
H. Okamoto and M. Shōji, Trajectories of fluid particles in a periodic water wave, Phil. Trans. R. Soc. A, 370 (2012), 1661-1676.doi: 10.1098/rsta.2011.0447. |
[23] |
F. Ruellan and A. Wallet, Trajectoires internes das un clapotis partiel, La Houille Blanche, 5 (1950), 483-489. |
[24] |
L. Skjelbreia and J. Hendrinck, Fifth Order Gravity Wave Theory, JProceedings of 7th conference on coastal engineering, ASCE 1960, 184-196. |
[25] |
J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Intersciene Publ. Inc., New York, 1957. |
[26] |
G. G. Stokes, On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., 8 (1847), 441-455.doi: 10.1017/CBO9780511702242.013. |
[27] |
L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2001.doi: 10.1137/1.9780898719598. |
[28] |
M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry, Phil. Trans. R. Soc. A, 370 (2012), 1687-1702.doi: 10.1098/rsta.2011.0450. |
[29] |
F. Ursell, Mass transport in gravity waves, Proc. Cambridge Phil. Soc., 40 (1953), 145-150.doi: 10.1017/S0305004100028140. |
[30] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley, New York, 1974. |