August  2014, 34(8): 3135-3153. doi: 10.3934/dcds.2014.34.3135

A boundary integral formulation for particle trajectories in Stokes waves

1. 

Instituto Nacional de Matemática Pura e Aplicada/IMPA, Est. D. Castorina, 110, J. Botânico, Rio de Janeiro, RJ 22460-320, Brazil

Received  July 2013 Revised  September 2013 Published  January 2014

Recently important theorems have been established presenting qualitative results for particle trajectories below a Stokes wave. A diversity of orbit patterns were described, including the case of a closed orbit when a Stokes wave propagates in the presence of an adverse current. In this work these results are revisited in a quantitative fashion through a boundary integral formulation which leads to very accurate numerical simulations of particle trajectories. The boundary integral formulation allows the accurate evaluation of the vector field of the (particle's) dynamical system, without resorting to a series expansion and a small parameter. Accurate trajectories are benchmarked against well known expansions for weakly nonlinear waves. Simulations are then performed beyond this regime. Closed orbits are found in the presence of an adverse current, as well as non-smooth trajectories that have not been reported. These occur for both adverse and favorable currents.
Citation: André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135
References:
[1]

D. P. Bertsekas, Nonlinear Programming,, $2^{nd}$ edition, (1999).  doi: 10.1038/sj.jors.2600425.  Google Scholar

[2]

H.-K. Chang, Y.-Y. Chen and J.-C. Liou, Particle trajectories of nonlinear gravity waves in deep water,, Ocean Engineering, 36 (2009), 324.  doi: 10.1016/j.oceaneng.2008.12.007.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, SIAM, (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin, M. Ehrnström and E. Wahlén, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1.  doi: 10.1016/j.nonrwa.2007.03.003.  Google Scholar

[8]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[9]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fulid Mech., 10 (2008), 1336.  doi: 10.1007/s00021-005-0214-2.  Google Scholar

[10]

M. W. Dingemans, Water Waves Propagation Over Uneven Bottoms,, World Scientific, (1997).  doi: 10.1142/1241-part1.  Google Scholar

[11]

J. D. Fenton, A fifth-order Stokes theory for steady waves,, Journal of Waterway, 111 (1985), 216.  doi: 10.1061/(ASCE)0733-950X(1985)111:2(216).  Google Scholar

[12]

J. D. Fenton, Nonlinear wave theories,, The Sea: Ocean Engineering Science, 9 (1990), 1.   Google Scholar

[13]

P. Guidotti, A new first-kind boundary integral formulation for the Dirichlet-to-Neumman map in 2D,, J. Comput. Phy., 190 (2008), 325.  doi: 10.1016/S0021-9991(03)00277-8.  Google Scholar

[14]

D. Henry, On the deep-water Stokes wave flow,, IMRN, 2008 (2008), 1.  doi: 10.1093/imrn/rnn071.  Google Scholar

[15]

M. Isobe, H. Nishimura and K. Horikawa, Expressions of Pertubation Solutions for Conservative Waves by Using Wave Height,, Proceedings of 33rd annual conference of JSCE 1978, (1978), 760.   Google Scholar

[16]

F. John, Partial Differential Equations,, $4^{th}$ edition, (1982).   Google Scholar

[17]

I. G. Jonsson and L. Arneborg, Energy properties and shoaling of higher-order stokes waves on current,, Ocean Engineering, 22 (1995), 819.  doi: 10.1016/0029-8018(95)00008-9.  Google Scholar

[18]

H. Lamb, Hydrodynamics,, Cambridge, (1895).   Google Scholar

[19]

M. S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves,, J. Fluid Mech., 173 (1986), 683.  doi: 10.1017/S0022112086001325.  Google Scholar

[20]

, Available at:, , ().   Google Scholar

[21]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, World Scientific, (2001).   Google Scholar

[22]

H. Okamoto and M. Shōji, Trajectories of fluid particles in a periodic water wave,, Phil. Trans. R. Soc. A, 370 (2012), 1661.  doi: 10.1098/rsta.2011.0447.  Google Scholar

[23]

F. Ruellan and A. Wallet, Trajectoires internes das un clapotis partiel,, La Houille Blanche, 5 (1950), 483.   Google Scholar

[24]

L. Skjelbreia and J. Hendrinck, Fifth Order Gravity Wave Theory,, JProceedings of 7th conference on coastal engineering, (1960), 184.   Google Scholar

[25]

J. J. Stoker, Water Waves. The Mathematical Theory with Applications,, Intersciene Publ. Inc., (1957).   Google Scholar

[26]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Cambridge Phil. Soc., 8 (1847), 441.  doi: 10.1017/CBO9780511702242.013.  Google Scholar

[27]

L. N. Trefethen, Spectral Methods in MATLAB,, SIAM, (2001).  doi: 10.1137/1.9780898719598.  Google Scholar

[28]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Phil. Trans. R. Soc. A, 370 (2012), 1687.  doi: 10.1098/rsta.2011.0450.  Google Scholar

[29]

F. Ursell, Mass transport in gravity waves,, Proc. Cambridge Phil. Soc., 40 (1953), 145.  doi: 10.1017/S0305004100028140.  Google Scholar

[30]

G. B. Whitham, Linear and Nonlinear Waves,, John Wiley, (1974).   Google Scholar

show all references

References:
[1]

D. P. Bertsekas, Nonlinear Programming,, $2^{nd}$ edition, (1999).  doi: 10.1038/sj.jors.2600425.  Google Scholar

[2]

H.-K. Chang, Y.-Y. Chen and J.-C. Liou, Particle trajectories of nonlinear gravity waves in deep water,, Ocean Engineering, 36 (2009), 324.  doi: 10.1016/j.oceaneng.2008.12.007.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, SIAM, (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin, M. Ehrnström and E. Wahlén, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1.  doi: 10.1016/j.nonrwa.2007.03.003.  Google Scholar

[8]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[9]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fulid Mech., 10 (2008), 1336.  doi: 10.1007/s00021-005-0214-2.  Google Scholar

[10]

M. W. Dingemans, Water Waves Propagation Over Uneven Bottoms,, World Scientific, (1997).  doi: 10.1142/1241-part1.  Google Scholar

[11]

J. D. Fenton, A fifth-order Stokes theory for steady waves,, Journal of Waterway, 111 (1985), 216.  doi: 10.1061/(ASCE)0733-950X(1985)111:2(216).  Google Scholar

[12]

J. D. Fenton, Nonlinear wave theories,, The Sea: Ocean Engineering Science, 9 (1990), 1.   Google Scholar

[13]

P. Guidotti, A new first-kind boundary integral formulation for the Dirichlet-to-Neumman map in 2D,, J. Comput. Phy., 190 (2008), 325.  doi: 10.1016/S0021-9991(03)00277-8.  Google Scholar

[14]

D. Henry, On the deep-water Stokes wave flow,, IMRN, 2008 (2008), 1.  doi: 10.1093/imrn/rnn071.  Google Scholar

[15]

M. Isobe, H. Nishimura and K. Horikawa, Expressions of Pertubation Solutions for Conservative Waves by Using Wave Height,, Proceedings of 33rd annual conference of JSCE 1978, (1978), 760.   Google Scholar

[16]

F. John, Partial Differential Equations,, $4^{th}$ edition, (1982).   Google Scholar

[17]

I. G. Jonsson and L. Arneborg, Energy properties and shoaling of higher-order stokes waves on current,, Ocean Engineering, 22 (1995), 819.  doi: 10.1016/0029-8018(95)00008-9.  Google Scholar

[18]

H. Lamb, Hydrodynamics,, Cambridge, (1895).   Google Scholar

[19]

M. S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves,, J. Fluid Mech., 173 (1986), 683.  doi: 10.1017/S0022112086001325.  Google Scholar

[20]

, Available at:, , ().   Google Scholar

[21]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, World Scientific, (2001).   Google Scholar

[22]

H. Okamoto and M. Shōji, Trajectories of fluid particles in a periodic water wave,, Phil. Trans. R. Soc. A, 370 (2012), 1661.  doi: 10.1098/rsta.2011.0447.  Google Scholar

[23]

F. Ruellan and A. Wallet, Trajectoires internes das un clapotis partiel,, La Houille Blanche, 5 (1950), 483.   Google Scholar

[24]

L. Skjelbreia and J. Hendrinck, Fifth Order Gravity Wave Theory,, JProceedings of 7th conference on coastal engineering, (1960), 184.   Google Scholar

[25]

J. J. Stoker, Water Waves. The Mathematical Theory with Applications,, Intersciene Publ. Inc., (1957).   Google Scholar

[26]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Cambridge Phil. Soc., 8 (1847), 441.  doi: 10.1017/CBO9780511702242.013.  Google Scholar

[27]

L. N. Trefethen, Spectral Methods in MATLAB,, SIAM, (2001).  doi: 10.1137/1.9780898719598.  Google Scholar

[28]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Phil. Trans. R. Soc. A, 370 (2012), 1687.  doi: 10.1098/rsta.2011.0450.  Google Scholar

[29]

F. Ursell, Mass transport in gravity waves,, Proc. Cambridge Phil. Soc., 40 (1953), 145.  doi: 10.1017/S0305004100028140.  Google Scholar

[30]

G. B. Whitham, Linear and Nonlinear Waves,, John Wiley, (1974).   Google Scholar

[1]

Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537

[2]

Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 539-559. doi: 10.3934/dcdsb.2009.12.539

[3]

Tony Lyons. Particle trajectories in extreme Stokes waves over infinite depth. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3095-3107. doi: 10.3934/dcds.2014.34.3095

[4]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[5]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[6]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[7]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[8]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[9]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[10]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[11]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[12]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[13]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[14]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[15]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[16]

Jonatan Lenells. Traveling waves in compressible elastic rods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 151-167. doi: 10.3934/dcdsb.2006.6.151

[17]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[18]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 599-628. doi: 10.3934/dcds.2013.33.599

[19]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[20]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]