Citation: |
[1] |
H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited, Adv. Diff. Eqns., 1 (1996), 73-90. |
[2] |
A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math., 225 (2010), 1820-1829.doi: 10.1016/j.aim.2010.04.018. |
[3] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pure Appl., 86 (2006), 529-540.doi: 10.1016/j.matpur.2006.08.002. |
[4] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. Math., 162 (2005), 1-13.doi: 10.4007/annals.2005.162.1377. |
[5] |
P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math., 38 (1985), 715-724.doi: 10.1002/cpa.3160380605. |
[6] |
S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys., 59 (1990), 1251-1263.doi: 10.1007/BF01334750. |
[7] |
S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Meth. Appl. Sci., 19 (1996), 1233-1255.doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W. |
[8] |
J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Comm. Pure Appl. Anal., 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407. |
[9] |
M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view, in Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, 2002, 723-758.doi: 10.1016/S1874-575X(02)80035-2. |
[10] |
S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation, Publ. RIMS, 43 (2007), 795-817.doi: 10.2977/prims/1201012042. |
[11] |
T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system, Arch. Rational Mech. Anal., 199 (2011), 117-144.doi: 10.1007/s00205-010-0319-5. |
[12] |
Y. Katznelson, An Introduction to Harmonic Analysis, 3rd Ed., Camb. Univ. Press, 2004. |
[13] |
K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform, J. Comp. Appl. Math., 152 (2003), 229-241.doi: 10.1016/S0377-0427(02)00708-2. |
[14] |
H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., 214 (2000), 191-200.doi: 10.1007/s002200000267. |
[15] |
Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, 1964. |
[16] |
Y. Matsuno, Bilinear Transformation Method, Academic Press, 1984. |
[17] |
M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems, Japan J. Indust. Appl. Math., 26 (2009), 41-63.doi: 10.1007/BF03167545. |
[18] |
M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations, Quader. di Mat., 10 (2003), 137-162. |
[19] |
K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited, J. Math. Phys., 53 (2012), 115607.doi: 10.1063/1.4738639. |
[20] |
H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid, J. Phys. Soc. Japan, 74 (2005), 2737-2742.doi: 10.1143/JPSJ.74.2737. |
[21] |
H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21 (2008), 2447-2461.doi: 10.1088/0951-7715/21/10/013. |
[22] |
T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind, J. Comp. Appl. Math., 234 (2010), 1211-1227.doi: 10.1016/j.cam.2009.07.049. |
[23] |
H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.doi: 10.1143/JPSJ.39.1082. |
[24] |
E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations, in Blow-up and Aggregation, (ed. by E. Yanagida), University of Tokyo Press 2006, 1-50 (in Japanese). |
[25] |
M. Wunsch, The generalized Constantin-Lax-Majda equation, Comm. Math. Sci., 9 (2011), 929-936.doi: 10.4310/CMS.2011.v9.n3.a12. |
[26] |
M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric, J. Nonlinear Math. Phys., 17 (2010), 7-11.doi: 10.1142/S1402925110000544. |
[27] |
M. Wunsch, The generalized Constantin-Lax-Majda equation revisited, Comm. Math. Sci., 9 (2011), 929-936.doi: 10.4310/CMS.2011.v9.n3.a12. |