August  2014, 34(8): 3193-3210. doi: 10.3934/dcds.2014.34.3193

Energy-minimising parallel flows with prescribed vorticity distribution

1. 

St John's College, Cambridge, CB2 1TP, United Kingdom

Received  April 2013 Published  January 2014

This note concerns a nonlinear differential equation problem in which both the nonlinearity in the equation and its solution are determined by other constraints. The question under consideration arises from a study of two-dimensional steady parallel-flows of a perfect fluid governed by Euler's equations and a free-boundary condition, when the distribution of vorticity is arbitrary but prescribed.
Citation: J. F. Toland. Energy-minimising parallel flows with prescribed vorticity distribution. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3193-3210. doi: 10.3934/dcds.2014.34.3193
References:
[1]

P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112. doi: 10.1515/CRELLE.2011.015.

[2]

T. B. Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, (Joint Sympos., IUTAM/IMU, Marseille, 1975), pp. 8-29. Lecture Notes in Math., 503. Springer, Berlin, 1976.

[3]

B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, To appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.

[4]

G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal., 176 (2005), 149-163. doi: 10.1007/s00205-004-0339-0.

[5]

G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007. doi: 10.1002/cpa.20365.

[6]

A. J. Chorin and J. E. Marsden, An Introduction to Mathematical Fluid Mechanics, Springer, New York, 1993.

[7]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527. doi: 10.1002/cpa.3046.

[8]

A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950. doi: 10.1002/cpa.20165.

[9]

M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.

[10]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd. Edition, Cambridge University Press, Cambridge, 1954. doi: 10.1037/e642452011-001.

[11]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, R. I. 1997.

[12]

V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399. doi: 10.1093/qjmam/hbr010.

[13]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Non-viscous Fluids, Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[14]

W. A. Strauss, Steady water waves, Bull. Am. Math. Soc., New Ser., 47 (2010), 671-694. doi: 10.1090/S0273-0979-2010-01302-1.

[15]

J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362. doi: 10.1007/s00205-007-0104-2.

[16]

J. F. Toland, Non-existence of global minimisers of energy in Stokes-wave problems, to appear in Discrete Continuous Dynam. Systems - A.

show all references

References:
[1]

P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112. doi: 10.1515/CRELLE.2011.015.

[2]

T. B. Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, (Joint Sympos., IUTAM/IMU, Marseille, 1975), pp. 8-29. Lecture Notes in Math., 503. Springer, Berlin, 1976.

[3]

B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, To appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.

[4]

G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal., 176 (2005), 149-163. doi: 10.1007/s00205-004-0339-0.

[5]

G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007. doi: 10.1002/cpa.20365.

[6]

A. J. Chorin and J. E. Marsden, An Introduction to Mathematical Fluid Mechanics, Springer, New York, 1993.

[7]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527. doi: 10.1002/cpa.3046.

[8]

A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950. doi: 10.1002/cpa.20165.

[9]

M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.

[10]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd. Edition, Cambridge University Press, Cambridge, 1954. doi: 10.1037/e642452011-001.

[11]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, R. I. 1997.

[12]

V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399. doi: 10.1093/qjmam/hbr010.

[13]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Non-viscous Fluids, Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[14]

W. A. Strauss, Steady water waves, Bull. Am. Math. Soc., New Ser., 47 (2010), 671-694. doi: 10.1090/S0273-0979-2010-01302-1.

[15]

J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362. doi: 10.1007/s00205-007-0104-2.

[16]

J. F. Toland, Non-existence of global minimisers of energy in Stokes-wave problems, to appear in Discrete Continuous Dynam. Systems - A.

[1]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[2]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[3]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[4]

Calin I. Martin. On three-dimensional free surface water flows with constant vorticity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2415-2431. doi: 10.3934/cpaa.2022053

[5]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[6]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[7]

David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057

[8]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[9]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[10]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[11]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[12]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[13]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[14]

Xingxing Liu. Stability in the energy space of the sum of $ N $ solitary waves for an equation modelling shallow water waves of moderate amplitude. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022105

[15]

Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[16]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[17]

H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure and Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907

[18]

Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036

[19]

Peter A. Hästö. On the existance of minimizers of the variable exponent Dirichlet energy integral. Communications on Pure and Applied Analysis, 2006, 5 (3) : 415-422. doi: 10.3934/cpaa.2006.5.415

[20]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]