\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy-minimising parallel flows with prescribed vorticity distribution

Abstract Related Papers Cited by
  • This note concerns a nonlinear differential equation problem in which both the nonlinearity in the equation and its solution are determined by other constraints. The question under consideration arises from a study of two-dimensional steady parallel-flows of a perfect fluid governed by Euler's equations and a free-boundary condition, when the distribution of vorticity is arbitrary but prescribed.
    Mathematics Subject Classification: 76B15, 35C07, 49K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112.doi: 10.1515/CRELLE.2011.015.

    [2]

    T. B. Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, (Joint Sympos., IUTAM/IMU, Marseille, 1975), pp. 8-29. Lecture Notes in Math., 503. Springer, Berlin, 1976.

    [3]

    B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, To appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.

    [4]

    G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal., 176 (2005), 149-163.doi: 10.1007/s00205-004-0339-0.

    [5]

    G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007.doi: 10.1002/cpa.20365.

    [6]

    A. J. Chorin and J. E. Marsden, An Introduction to Mathematical Fluid Mechanics, Springer, New York, 1993.

    [7]

    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527.doi: 10.1002/cpa.3046.

    [8]

    A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950.doi: 10.1002/cpa.20165.

    [9]

    M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.

    [10]

    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd. Edition, Cambridge University Press, Cambridge, 1954.doi: 10.1037/e642452011-001.

    [11]

    E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, R. I. 1997.

    [12]

    V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399.doi: 10.1093/qjmam/hbr010.

    [13]

    C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Non-viscous Fluids, Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-4284-0.

    [14]

    W. A. Strauss, Steady water waves, Bull. Am. Math. Soc., New Ser., 47 (2010), 671-694.doi: 10.1090/S0273-0979-2010-01302-1.

    [15]

    J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362.doi: 10.1007/s00205-007-0104-2.

    [16]

    J. F. Toland, Non-existence of global minimisers of energy in Stokes-wave problems, to appear in Discrete Continuous Dynam. Systems - A.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return