Advanced Search
Article Contents
Article Contents

Energy-minimising parallel flows with prescribed vorticity distribution

Abstract Related Papers Cited by
  • This note concerns a nonlinear differential equation problem in which both the nonlinearity in the equation and its solution are determined by other constraints. The question under consideration arises from a study of two-dimensional steady parallel-flows of a perfect fluid governed by Euler's equations and a free-boundary condition, when the distribution of vorticity is arbitrary but prescribed.
    Mathematics Subject Classification: 76B15, 35C07, 49K30.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112.doi: 10.1515/CRELLE.2011.015.


    T. B. Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, (Joint Sympos., IUTAM/IMU, Marseille, 1975), pp. 8-29. Lecture Notes in Math., 503. Springer, Berlin, 1976.


    B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, To appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.


    G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal., 176 (2005), 149-163.doi: 10.1007/s00205-004-0339-0.


    G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007.doi: 10.1002/cpa.20365.


    A. J. Chorin and J. E. Marsden, An Introduction to Mathematical Fluid Mechanics, Springer, New York, 1993.


    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527.doi: 10.1002/cpa.3046.


    A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950.doi: 10.1002/cpa.20165.


    M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.


    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd. Edition, Cambridge University Press, Cambridge, 1954.doi: 10.1037/e642452011-001.


    E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, R. I. 1997.


    V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399.doi: 10.1093/qjmam/hbr010.


    C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Non-viscous Fluids, Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-4284-0.


    W. A. Strauss, Steady water waves, Bull. Am. Math. Soc., New Ser., 47 (2010), 671-694.doi: 10.1090/S0273-0979-2010-01302-1.


    J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362.doi: 10.1007/s00205-007-0104-2.


    J. F. Toland, Non-existence of global minimisers of energy in Stokes-wave problems, to appear in Discrete Continuous Dynam. Systems - A.

  • 加载中

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint