Advanced Search
Article Contents
Article Contents

Non-existence of global energy minimisers in Stokes waves problems

Abstract Related Papers Cited by
  • Recently it was shown that a wave profile which minimises total energy, elastic plus hydrodynamic, subject to the vorticity distribution being prescribed, gives rise to a steady hydroelastic wave. Using this formulation, the existence of non-trivial minimisers leading to such waves was established for certain non-zero values of the elastic constants used to model the surface. Here we show that when these constants are zero, global minimisers do not exist except in a unique set of circumstances.
    Mathematics Subject Classification: 76B15, 35C07, 49J99.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112.doi: 10.1515/CRELLE.2011.015.


    B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, to appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.


    G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007.doi: 10.1002/cpa.20365.


    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527.doi: 10.1002/cpa.3046.


    A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950.doi: 10.1002/cpa.20165.


    M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.


    V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399.doi: 10.1093/qjmam/hbr010.


    E. Shargorodsky and J. F. Toland, Bernoulli Free-Boundary Problems, Memoirs of Amer. Math. Soc., 914, ISSN 0065-9266, Providence, RI, 2008.doi: 10.1090/memo/0914.


    W. A. Strauss, Steady water waves, Bull. Am. Math. Soc. (N.S.), 47 (2010), 671-694.doi: 10.1090/S0273-0979-2010-01302-1.


    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-8.


    J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362.doi: 10.1007/s00205-007-0104-2.


    J. F. TolandEnergy-minimising parallel flows with prescribed vorticity distribution, to appear in Discrete Continuous Dynam. Systems - A.

  • 加载中

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint