\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-existence of global energy minimisers in Stokes waves problems

Abstract Related Papers Cited by
  • Recently it was shown that a wave profile which minimises total energy, elastic plus hydrodynamic, subject to the vorticity distribution being prescribed, gives rise to a steady hydroelastic wave. Using this formulation, the existence of non-trivial minimisers leading to such waves was established for certain non-zero values of the elastic constants used to model the surface. Here we show that when these constants are zero, global minimisers do not exist except in a unique set of circumstances.
    Mathematics Subject Classification: 76B15, 35C07, 49J99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Baldi and J. F. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math., 652 (2011), 67-112.doi: 10.1515/CRELLE.2011.015.

    [2]

    B. Buffoni and G. R. Burton, On the stability of travelling waves with vorticity obtained by minimisation, to appear in Nonlinear Differential Equations Appl., http://arxiv.org/abs/1207.7198. doi: 10.1007/s00030-013-0223-4.

    [3]

    G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math., LXIV (2011), 975-1007.doi: 10.1002/cpa.20365.

    [4]

    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., LVII (2004), 481-527.doi: 10.1002/cpa.3046.

    [5]

    A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., LX (2007), 911-950.doi: 10.1002/cpa.20165.

    [6]

    M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl., 13 (1934), 217-291.

    [7]

    V. Kozlov and N. Kuznetsov, Steady free-surface vortical flows parallel to the horizontal bottom, Quart. J. Mech. Appl. Math., 64 (2011), 371-399.doi: 10.1093/qjmam/hbr010.

    [8]

    E. Shargorodsky and J. F. Toland, Bernoulli Free-Boundary Problems, Memoirs of Amer. Math. Soc., 914, ISSN 0065-9266, Providence, RI, 2008.doi: 10.1090/memo/0914.

    [9]

    W. A. Strauss, Steady water waves, Bull. Am. Math. Soc. (N.S.), 47 (2010), 671-694.doi: 10.1090/S0273-0979-2010-01302-1.

    [10]

    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-8.

    [11]

    J. F. Toland, Steady periodic hydroelastic waves, Arch. Rational Mech. Anal., 189 (2008), 325-362.doi: 10.1007/s00205-007-0104-2.

    [12]

    J. F. TolandEnergy-minimising parallel flows with prescribed vorticity distribution, to appear in Discrete Continuous Dynam. Systems - A.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return