Citation: |
[1] |
M. J. Ablowitz and T. S. Haut, Spectral formulation of the two fluid Euler equations with a free interface and long wave reductions, Analysis and Applications, 6 (2008), 323-348.doi: 10.1142/S0219530508001213. |
[2] |
A. Ali and H. Kalisch, Reconstruction of the pressure in long-wave models with constant vorticity, European Journal of Mechanics B / Fluids, 37 (2013), 187-194.doi: 10.1016/j.euromechflu.2012.09.009. |
[3] |
A. C. L. Ashton and A. S. Fokas, A non-local formulation of rotational water waves, Journal of Fluid Mechanics, 689 (2011), 129-148, http://journals.cambridge.org/article_S0022112011004046.doi: 10.1017/jfm.2011.404. |
[4] |
D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, Journal of Fluid Mechanics, 714 (2013), 463-475.doi: 10.1017/jfm.2012.490. |
[5] |
A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1. |
[6] |
A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.doi: 10.1017/S0022112003006773. |
[7] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Communications on Pure and Applied Mathematics, 57 (2004), 481-527.doi: 10.1002/cpa.3046. |
[8] |
A. Constantin and W. Strauss, Rotational steady water waves near stagnation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2227-2239.doi: 10.1098/rsta.2007.2004. |
[9] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Communications on Pure and Applied Mathematics, 63 (2010), 533-557.doi: 10.1002/cpa.20299. |
[10] |
A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. of Rat. Mech. and Anal., 199 (2011), 33-67.doi: 10.1007/s00205-010-0314-x. |
[11] |
B. Deconinck and K. Oliveras, The instability of periodic surface gravity waves, J. Fluid Mech., 675 (2011), 141-167.doi: 10.1017/S0022112011000073. |
[12] |
D. Henry, On the pressure transfer function for solitary water waves with vorticity, Mathematische Annalen, 357 (2013), 23-30.doi: 10.1007/s00208-013-0899-0. |
[13] |
J. Ko and W. Strauss, Effect of vorticity on steady water waves, Journal of Fluid Mechanics, 608 (2008), 197-215.doi: 10.1017/S0022112008002371. |
[14] |
J. Ko and W. Strauss, Large-amplitude steady rotational water waves, European Journal of Mechanics-B/Fluids, 27 (2008), 96-109.doi: 10.1016/j.euromechflu.2007.04.004. |
[15] |
K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. of Applied Mathematics, 72 (2012), 897-918.doi: 10.1137/110853285. |
[16] |
A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, Journal of Fluid Mechanics, 195 (1988), 281-302.doi: 10.1017/S0022112088002423. |
[17] |
V. Vasan and B. Deconinck, The inverse water wave problem of bathymetry detection, Journal of Fluid Mechanics, 714 (2013), 562-590.doi: 10.1017/jfm.2012.497. |
[18] |
E. Wahlen, Steady periodic capillary waves with vorticity, Ark. Mat., 44 (2006), 367-387.doi: 10.1007/s11512-006-0024-7. |
[19] |
E. Wahlen, Steady water waves with a critical layer, Journal of Differential Equations, 246 (2009), 2468-2483.doi: 10.1016/j.jde.2008.10.005. |
[20] |
P. I. Plotnikov and J. F. Toland, The Fourier Coefficients of Stokes Waves, Nonlinear Problems in Mathematical Physics and Related Topics, 1 (2002), 303-315.doi: 10.1007/978-1-4615-0777-2_18. |