September  2014, 34(9): 3317-3339. doi: 10.3934/dcds.2014.34.3317

A Liouville-type theorem for higher order elliptic systems

1. 

Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States, United States, United States

Received  August 2013 Revised  December 2013 Published  March 2014

We prove there are no positive solutions to higher order elliptic system \begin{equation*} \left\{ \begin{array}{c} \left( -\Delta \right) ^{m}u=v^{p} \\ \left( -\Delta \right) ^{m}v=u^{q} \end{array} \text{ in }\mathbb{R}^{N}\right. \end{equation*} if $p\geq 1,$ $q\geq 1$, and $( p,q) \neq ( 1,1) $ satisfies $\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2m}{N}$ and $\max \left( \frac{2\left( p+1\right) }{pq-1},\frac{2\left( q+1\right) }{pq-1}\right) > \frac{N-2m-1}{m}.$ Moreover, if $N=2m+1$ or $N=2m+2,$ this system admits no positive solutions if $p\geq 1,$ $q\geq 1,$ $\left( p,q\right) \neq \left( 1,1\right) $ satisfies $\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2m}{N}.$
Citation: Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317
References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems,, Indiana. J., 51 (2002), 37. Google Scholar

[2]

D. G. de Figueiredo and P. Felmer, A Liouville-type Theorem for elliptic systems,, Ann. Sc. Norm. Sup. Pisa, 21 (1994), 387. Google Scholar

[3]

C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052. Google Scholar

[4]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$,, J. Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[5]

E. Mitidieri, A Rellich type identity and applications,, Comm. P.D.E., 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[6]

E. Mitidieri, Non-existence of positive solutions of semilinear elliptic systems in $\mathbbR^n$.,, Diff. Int. Eq., 9 (1996), 465. Google Scholar

[7]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems,, Duke Math. J., 139 (2007), 411. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[8]

J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems,, Discourses in Mathematics and its Applications, 3 (1994), 55. Google Scholar

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, Diff. Int. Eq., 9 (1996), 635. Google Scholar

[10]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden systems,, Atti. Sem. mat. Fis. Univ. Modena, 46 (1998), 369. Google Scholar

[11]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Adv. in Math., 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[12]

M. A. Souto, Sobre a Existência de Soluç ões Positivas Para Sistemas Cooperativos Não Lineares,, PhD thesis, (1992). Google Scholar

[13]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar

[14]

X. Yan, A Liouville Theorem for Higher order Elliptic system,, J. Math. Anal. Appl., 387 (2012), 153. doi: 10.1016/j.jmaa.2011.08.081. Google Scholar

show all references

References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems,, Indiana. J., 51 (2002), 37. Google Scholar

[2]

D. G. de Figueiredo and P. Felmer, A Liouville-type Theorem for elliptic systems,, Ann. Sc. Norm. Sup. Pisa, 21 (1994), 387. Google Scholar

[3]

C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052. Google Scholar

[4]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$,, J. Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[5]

E. Mitidieri, A Rellich type identity and applications,, Comm. P.D.E., 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[6]

E. Mitidieri, Non-existence of positive solutions of semilinear elliptic systems in $\mathbbR^n$.,, Diff. Int. Eq., 9 (1996), 465. Google Scholar

[7]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems,, Duke Math. J., 139 (2007), 411. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[8]

J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems,, Discourses in Mathematics and its Applications, 3 (1994), 55. Google Scholar

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, Diff. Int. Eq., 9 (1996), 635. Google Scholar

[10]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden systems,, Atti. Sem. mat. Fis. Univ. Modena, 46 (1998), 369. Google Scholar

[11]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Adv. in Math., 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[12]

M. A. Souto, Sobre a Existência de Soluç ões Positivas Para Sistemas Cooperativos Não Lineares,, PhD thesis, (1992). Google Scholar

[13]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar

[14]

X. Yan, A Liouville Theorem for Higher order Elliptic system,, J. Math. Anal. Appl., 387 (2012), 153. doi: 10.1016/j.jmaa.2011.08.081. Google Scholar

[1]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[2]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[3]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[4]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[5]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[6]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[7]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[8]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[9]

Xinmin Yang, Jin Yang, Heung Wing Joseph Lee. Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 525-530. doi: 10.3934/jimo.2013.9.525

[10]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[11]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[12]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[13]

G. R. Cirmi, S. Leonardi. Higher differentiability for solutions of linear elliptic systems with measure data. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 89-104. doi: 10.3934/dcds.2010.26.89

[14]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[15]

Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004

[16]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[17]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[18]

Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967

[19]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[20]

Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]