September  2014, 34(9): 3341-3352. doi: 10.3934/dcds.2014.34.3341

Density of fiberwise orbits in minimal iterated function systems on the circle

1. 

Instituto de Matemática e Estatística, UFF, Rua Mário Santos Braga s/n - Campus Valonguinhos, Niterói, Brazil

2. 

Department of Mathematics, Shahid Beheshti University, G.C.Tehran 19839, Iran

3. 

Department of Mathematics, Ilam University, P.O. Box 69315-516, Ilam, Iran

Received  August 2013 Revised  January 2014 Published  March 2014

We study the minimality of almost every orbital branch of minimal iterated function systems (IFSs). We prove that this kind of minimality holds for forward and backward minimal IFSs generated by orientation-preserving homeomorphisms of the circle. We provide new examples of iterated functions systems where this behavior persists under perturbation of the generators.
Citation: Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341
References:
[1]

V. A. Antonov, Modeling Cyclic Evolution Processes: Synchronization by Means of Random Signal,, Leingradskii Universitet Vestnik Matematika Mekhanika Astronomiia, (1984), 67.

[2]

A. Arbieto, A. Junqueira and B. Santiago, On weakly hyperbolic iterated functions systems,, preprint, ().

[3]

M. F. Barnsley and K. Leśniak, The chaos game on a general iterated function system from a topological point of view,, preprint, ().

[4]

M. F. Barnsley and A. Vince, The chaos game on a general iterated function system,, Ergodic Theory and Dynam. Systems, 31 (2011), 1073. doi: 10.1017/S0143385710000428.

[5]

M. F. Barnsley and A. Vince, The conley attractor of an iterated function system,, Bull. Aust. Math. Soc., 88 (2013), 267. doi: 10.1017/S0004972713000348.

[6]

P. G. Barrientos and A. Raibekas, Dynamics of iterated function systems on the circle close to rotations,, to appear in Ergodic Theory and Dynam. Systems, ().

[7]

C. Bonatti and N. Guelman, Smooth Conjugacy classes of circle diffeomorphisms with irrational rotation number,, preprint, ().

[8]

T. Golenishcheva-Kutuzova, A. S. Gorodetski, V. Kleptsyn and D. Volk, Translation numbers define generators of $F_k^+\to Homeo_+(\mathbbS^1)$,, preprint, ().

[9]

A. S. Gorodetski and Yu. S. Ilyashenko, Certain new robust properties of invariant sets and attractors of dynamical systems,, Functional Analysis and Its Applications, 33 (1999), 95. doi: 10.1007/BF02465190.

[10]

A. S. Gorodetski and Yu. S. Ilyashenko, Some properties of skew products over a horseshoe and a solenoid,, Tr. Mat. Inst. Steklova, 231 (2000), 96.

[11]

A. J. Homburg, Circle diffeomorphisms forced by expanding circle maps,, Ergodic Theory and Dynam. Systems, 32 (2012), 2011. doi: 10.1017/S014338571100068X.

[12]

A. J. Homburg, Synchronization in iterated function systems,, preprint, ().

[13]

J. E. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713. doi: 10.1512/iumj.1981.30.30055.

[14]

V. A. Kleptsyn and M. B. Nalskii, Contraction of orbits in random dynamical systems on the circle,, Functional Analysis and Its Applications, 38 (2004), 267. doi: 10.1007/s10688-005-0005-9.

show all references

References:
[1]

V. A. Antonov, Modeling Cyclic Evolution Processes: Synchronization by Means of Random Signal,, Leingradskii Universitet Vestnik Matematika Mekhanika Astronomiia, (1984), 67.

[2]

A. Arbieto, A. Junqueira and B. Santiago, On weakly hyperbolic iterated functions systems,, preprint, ().

[3]

M. F. Barnsley and K. Leśniak, The chaos game on a general iterated function system from a topological point of view,, preprint, ().

[4]

M. F. Barnsley and A. Vince, The chaos game on a general iterated function system,, Ergodic Theory and Dynam. Systems, 31 (2011), 1073. doi: 10.1017/S0143385710000428.

[5]

M. F. Barnsley and A. Vince, The conley attractor of an iterated function system,, Bull. Aust. Math. Soc., 88 (2013), 267. doi: 10.1017/S0004972713000348.

[6]

P. G. Barrientos and A. Raibekas, Dynamics of iterated function systems on the circle close to rotations,, to appear in Ergodic Theory and Dynam. Systems, ().

[7]

C. Bonatti and N. Guelman, Smooth Conjugacy classes of circle diffeomorphisms with irrational rotation number,, preprint, ().

[8]

T. Golenishcheva-Kutuzova, A. S. Gorodetski, V. Kleptsyn and D. Volk, Translation numbers define generators of $F_k^+\to Homeo_+(\mathbbS^1)$,, preprint, ().

[9]

A. S. Gorodetski and Yu. S. Ilyashenko, Certain new robust properties of invariant sets and attractors of dynamical systems,, Functional Analysis and Its Applications, 33 (1999), 95. doi: 10.1007/BF02465190.

[10]

A. S. Gorodetski and Yu. S. Ilyashenko, Some properties of skew products over a horseshoe and a solenoid,, Tr. Mat. Inst. Steklova, 231 (2000), 96.

[11]

A. J. Homburg, Circle diffeomorphisms forced by expanding circle maps,, Ergodic Theory and Dynam. Systems, 32 (2012), 2011. doi: 10.1017/S014338571100068X.

[12]

A. J. Homburg, Synchronization in iterated function systems,, preprint, ().

[13]

J. E. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713. doi: 10.1512/iumj.1981.30.30055.

[14]

V. A. Kleptsyn and M. B. Nalskii, Contraction of orbits in random dynamical systems on the circle,, Functional Analysis and Its Applications, 38 (2004), 267. doi: 10.1007/s10688-005-0005-9.

[1]

Piotr Oprocha. Double minimality, entropy and disjointness with all minimal systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 263-275. doi: 10.3934/dcds.2019011

[2]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[3]

Giovanni F. Gronchi, Giacomo Tommei. On the uncertainty of the minimal distance between two confocal Keplerian orbits. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 755-778. doi: 10.3934/dcdsb.2007.7.755

[4]

Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337

[5]

Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227

[6]

A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463

[7]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[8]

Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937

[9]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[10]

S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287

[11]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[12]

Marco Spadini. Branches of harmonic solutions to periodically perturbed coupled differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 951-964. doi: 10.3934/dcds.2006.15.951

[13]

Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230-238. doi: 10.3934/proc.2015.0230

[14]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[15]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[16]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[17]

Heather Hannah, A. Alexandrou Himonas, Gerson Petronilho. Anisotropic Gevrey regularity for mKdV on the circle. Conference Publications, 2011, 2011 (Special) : 634-642. doi: 10.3934/proc.2011.2011.634

[18]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[19]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[20]

Mauro Pontani. Orbital transfers: optimization methods and recent results. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 435-485. doi: 10.3934/naco.2011.1.435

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

[Back to Top]