-
Previous Article
Ergodicity criteria for non-expanding transformations of 2-adic spheres
- DCDS Home
- This Issue
- Next Article
Gravitational Field Equations and Theory of Dark Matter and Dark Energy
1. | Department of Mathematics, Sichuan University, Chengdu |
2. | Department of Mathematics, Indiana University, Bloomington, IN 47405 |
References:
[1] |
H. A. Atwater, "Introduction to General Relativity," International Series of Monographs in Natural Philosophy, Vol. 63, Pergamon Press, Oxford-New York-Toronto, Ont., 1974. |
[2] |
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Physics Reports, 405 (2005), 279-390.
doi: 10.1016/j.physrep.2004.08.031. |
[3] |
C. H. Brans and R. H. Dicke, Mach's principle and a relativistic theory of gravitation, Physical Review (2), 124 (1961), 925-935.
doi: 10.1103/PhysRev.124.925. |
[4] |
H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Monthly Notices of the Royal Astronomical Society, 150 (1970), 1-8. |
[5] |
R. Caldwell, R. Dave and P. J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., 80 (1998), 1582-1585.
doi: 10.1103/PhysRevLett.80.1582. |
[6] |
R. Caldwell and E. V. Linder, The limits of quintessence, Phys. Rev. Lett., 95 (2005), 141301.
doi: 10.1103/PhysRevLett.95.141301. |
[7] |
S. Capozziello and M. De Laurentis, Extended theories of gravity, Phys. Rept., 509 (2011), 167-320.
doi: 10.1016/j.physrep.2011.09.003. |
[8] |
Élie Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174 (1922), 593-595. |
[9] |
B. Chow, P. Lu and L. Ni, "Hamilton's Ricci Flow," Graduate Studies in Mathematics, Vol. 77, American Mathematical Society, Providence, RI, 2006. |
[10] |
D. Clowe, et al., A direct empirical proof of the existence of dark matter, Astrophys. J., 648 (2006), L109-L113.
doi: 10.1086/508162. |
[11] |
T. Damour and G. Esposito-Farse, Tensor-multi-scalar theories of gravitation, Class. Quantum Grav., 9 (1992), 2093-2176.
doi: 10.1088/0264-9381/9/9/015. |
[12] |
Joshua A. Frieman, Michael S. Turner and Dragan Huterer, Dark energy and the accelerating universe, Annu. Rev. Astro. Astrophys., 46 (2008), 385-432. |
[13] |
M. L. Kutner, "Astronomy: A Physical Perspective," Second edition, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511802195. |
[14] |
L. D. Landau and E. M. Lifshitz, "Course of Theoretical Physics, Vol. 2. The Classical Theory of Fields," Fourth edition, Pergamon Press, Oxford-New York-Toronto, Ont., 1975. |
[15] |
T. Ma, "Manifold Topology," (in Chinese) Science Press, Beijing, 2010. |
[16] |
_______, "Theory and Methods of Partial Differential Equations," (in Chinese) Science Press, Beijing, 2011. |
[17] |
T. Ma and S. Wang, "Bifurcation Theory and Applications," World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, Vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812701152. |
[18] |
_______, "Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics," Mathematical Surveys and Monographs, Vol. 119, American Mathematical Society, Providence, RI, 2005. |
[19] |
_______, "Phase Transition Dynamics," Springer-Verlag, October, 2013. |
[20] |
_______, Unified field equations coupling four forces and principle of interaction dynamics, arXiv:1210.0448, 2012. |
[21] |
_______, Unified field theory and principle of representation invariance, arXiv:1212.4893, 2012; part (the earliest version) of this preprint is to appear in Applied Mathematics and Optimization. |
[22] |
R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps reveal cosmic scaffolding, Nature, 445 (2007), 286-290. |
[23] |
P. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys., 75 (2003), 559-606.
doi: 10.1103/RevModPhys.75.559. |
[24] |
S. Perlmutter, et al., Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae, Astrophys. J., 517 (1999), 565-586. |
[25] |
Nikodem J. Popławski, Cosmology with torsion: An alternative to cosmic inflation, Phys. Lett. B, 694 (2010), 181-185.
doi: 10.1016/j.physletb.2010.09.056. |
[26] |
B. Ratra and P. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, 37 (1988), 3406-3427.
doi: 10.1103/PhysRevD.37.3406. |
[27] |
A. G. Riess, et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116 (1998), 1009-1038.
doi: 10.1086/300499. |
[28] |
V. Rubin, W. K. Ford, Jr., Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophysical Journal, 159 (1970), 379-404.
doi: 10.1086/150317. |
[29] |
C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B, 302 (1988), 668-696.
doi: 10.1016/0550-3213(88)90193-9. |
[30] |
C. M. Will, "Theory and Experiment in Gravitational Physics," Second edition, Cambridge University Press, Cambridge-New York, 1993. |
[31] |
I. Zlatev, L.-M. Wang and P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82 (1999), 896-899.
doi: 10.1103/PhysRevLett.82.896. |
[32] |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophysical Journal, 86 (1937), 217-246. |
show all references
References:
[1] |
H. A. Atwater, "Introduction to General Relativity," International Series of Monographs in Natural Philosophy, Vol. 63, Pergamon Press, Oxford-New York-Toronto, Ont., 1974. |
[2] |
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Physics Reports, 405 (2005), 279-390.
doi: 10.1016/j.physrep.2004.08.031. |
[3] |
C. H. Brans and R. H. Dicke, Mach's principle and a relativistic theory of gravitation, Physical Review (2), 124 (1961), 925-935.
doi: 10.1103/PhysRev.124.925. |
[4] |
H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Monthly Notices of the Royal Astronomical Society, 150 (1970), 1-8. |
[5] |
R. Caldwell, R. Dave and P. J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., 80 (1998), 1582-1585.
doi: 10.1103/PhysRevLett.80.1582. |
[6] |
R. Caldwell and E. V. Linder, The limits of quintessence, Phys. Rev. Lett., 95 (2005), 141301.
doi: 10.1103/PhysRevLett.95.141301. |
[7] |
S. Capozziello and M. De Laurentis, Extended theories of gravity, Phys. Rept., 509 (2011), 167-320.
doi: 10.1016/j.physrep.2011.09.003. |
[8] |
Élie Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174 (1922), 593-595. |
[9] |
B. Chow, P. Lu and L. Ni, "Hamilton's Ricci Flow," Graduate Studies in Mathematics, Vol. 77, American Mathematical Society, Providence, RI, 2006. |
[10] |
D. Clowe, et al., A direct empirical proof of the existence of dark matter, Astrophys. J., 648 (2006), L109-L113.
doi: 10.1086/508162. |
[11] |
T. Damour and G. Esposito-Farse, Tensor-multi-scalar theories of gravitation, Class. Quantum Grav., 9 (1992), 2093-2176.
doi: 10.1088/0264-9381/9/9/015. |
[12] |
Joshua A. Frieman, Michael S. Turner and Dragan Huterer, Dark energy and the accelerating universe, Annu. Rev. Astro. Astrophys., 46 (2008), 385-432. |
[13] |
M. L. Kutner, "Astronomy: A Physical Perspective," Second edition, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511802195. |
[14] |
L. D. Landau and E. M. Lifshitz, "Course of Theoretical Physics, Vol. 2. The Classical Theory of Fields," Fourth edition, Pergamon Press, Oxford-New York-Toronto, Ont., 1975. |
[15] |
T. Ma, "Manifold Topology," (in Chinese) Science Press, Beijing, 2010. |
[16] |
_______, "Theory and Methods of Partial Differential Equations," (in Chinese) Science Press, Beijing, 2011. |
[17] |
T. Ma and S. Wang, "Bifurcation Theory and Applications," World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, Vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812701152. |
[18] |
_______, "Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics," Mathematical Surveys and Monographs, Vol. 119, American Mathematical Society, Providence, RI, 2005. |
[19] |
_______, "Phase Transition Dynamics," Springer-Verlag, October, 2013. |
[20] |
_______, Unified field equations coupling four forces and principle of interaction dynamics, arXiv:1210.0448, 2012. |
[21] |
_______, Unified field theory and principle of representation invariance, arXiv:1212.4893, 2012; part (the earliest version) of this preprint is to appear in Applied Mathematics and Optimization. |
[22] |
R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps reveal cosmic scaffolding, Nature, 445 (2007), 286-290. |
[23] |
P. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys., 75 (2003), 559-606.
doi: 10.1103/RevModPhys.75.559. |
[24] |
S. Perlmutter, et al., Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae, Astrophys. J., 517 (1999), 565-586. |
[25] |
Nikodem J. Popławski, Cosmology with torsion: An alternative to cosmic inflation, Phys. Lett. B, 694 (2010), 181-185.
doi: 10.1016/j.physletb.2010.09.056. |
[26] |
B. Ratra and P. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, 37 (1988), 3406-3427.
doi: 10.1103/PhysRevD.37.3406. |
[27] |
A. G. Riess, et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116 (1998), 1009-1038.
doi: 10.1086/300499. |
[28] |
V. Rubin, W. K. Ford, Jr., Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophysical Journal, 159 (1970), 379-404.
doi: 10.1086/150317. |
[29] |
C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B, 302 (1988), 668-696.
doi: 10.1016/0550-3213(88)90193-9. |
[30] |
C. M. Will, "Theory and Experiment in Gravitational Physics," Second edition, Cambridge University Press, Cambridge-New York, 1993. |
[31] |
I. Zlatev, L.-M. Wang and P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82 (1999), 896-899.
doi: 10.1103/PhysRevLett.82.896. |
[32] |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophysical Journal, 86 (1937), 217-246. |
[1] |
Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119 |
[2] |
Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306 |
[3] |
Byung-Hoon Hwang, Ho Lee, Seok-Bae Yun. Relativistic BGK model for massless particles in the FLRW spacetime. Kinetic and Related Models, 2021, 14 (6) : 949-959. doi: 10.3934/krm.2021031 |
[4] |
Claude Elbaz. Gravitational and electromagnetic properties of almost standing fields. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 835-848. doi: 10.3934/dcdsb.2012.17.835 |
[5] |
Angelo Alberti, Claudio Vidal. Singularities in the gravitational attraction problem due to massive bodies. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 805-822. doi: 10.3934/dcds.2010.26.805 |
[6] |
P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199 |
[7] |
David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327 |
[8] |
Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007 |
[9] |
François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417 |
[10] |
Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87 |
[11] |
Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic and Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1 |
[12] |
Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006 |
[13] |
Pierre Carcaud, Pierre-Henri Chavanis, Mohammed Lemou, Florian Méhats. Evaporation law in kinetic gravitational systems described by simplified Landau models. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 907-934. doi: 10.3934/dcdsb.2010.14.907 |
[14] |
Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036 |
[15] |
Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure and Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803 |
[16] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1215-1231. doi: 10.3934/cpaa.2016.15.1215 |
[17] |
Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations and Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022 |
[18] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[19] |
Xavier Cabré, Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1179-1206. doi: 10.3934/dcds.2010.28.1179 |
[20] |
Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]