\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homoclinic orbits of first-order superquadratic Hamiltonian systems

Abstract Related Papers Cited by
  • In this article, we study the existence of homoclinic orbits for the first-order Hamiltonian system \begin{equation*} J\dot{u}(t)+\nabla H(t,u(t))=0,\quad t\in\mathbb{R}. \end{equation*} Under the Ambrosetti-Rabinowitz's superquadraticy condition, or no Ambrosetti-Rabinowitz's superquadracity condition, we present two results on the existence of infinitely many large energy homoclinic orbits when $H$ is even in $u$. We apply the generalized (variant) fountain theorems established recently by the author and Colin. Under no Ambrosetti-Rabinowitz's superquadracity condition, we also obtain the existence of a ground state homoclinic orbit by using the method of the generalized Nehari manifold for strongly indefinite functionals developed by Szulkin and Weth.
    Mathematics Subject Classification: Primary: 37J45; Secondary: 35B38, 70H05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    [2]

    T. Bartsch and A. Szulkin, Hamiltonian Systems: Periodic and Homoclinic Solutions by Variational Methods, Elsevier B. V., Amsterdam, 2005.

    [3]

    C. J. Batkam and F. Colin, Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 405 (2013), 438-452.doi: 10.1016/j.jmaa.2013.04.018.

    [4]

    C. J. Batkam and F. Colin, On multiple solutions of a semilinear Schrödinger equation with periodic potential, Nonlinear Anal., 84 (2013), 39-49.doi: 10.1016/j.na.2013.02.006.

    [5]

    H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.doi: 10.2307/2044999.

    [6]

    G. Chen and S. Ma, Homoclinic orbits of superlinear Hamiltonian systems, Proc. Amer. Math. Soc., 139 (2011), 3973-3983.doi: 10.1090/S0002-9939-2011-11185-7.

    [7]

    V. Coti-Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 228 (1990), 133-160.doi: 10.1007/BF01444526.

    [8]

    Y. H. Ding, Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms, Commun. Contemp. Math., 8 (2006), 453-480.doi: 10.1142/S0219199706002192.

    [9]

    Y. H. Ding and M. Girardi, Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear Anal., 38 (1999), 391-415.doi: 10.1016/S0362-546X(98)00204-1.

    [10]

    L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbbR^N$, Proc. Roy. Soc. Edinburgh A, 129 (1999), 787-809.doi: 10.1017/S0308210500013147.

    [11]

    W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differ. Equat., 3 (1998), 441-472.

    [12]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré, 1 (1984), 223-283.

    [13]

    A. Mao and S. Luan, Critical points theorems concerning strongly indefinite functionals and infinite many periodic solutions for a class of Hamiltonian systems, Appl. Math. Comput., 214 (2009), 187-200.doi: 10.1016/j.amc.2009.03.084.

    [14]

    A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.doi: 10.1007/s00032-005-0047-8.

    [15]

    P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 473-499.doi: 10.1007/BF02571356.

    [16]

    E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42.doi: 10.1007/BF02570817.

    [17]

    M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 9 (2003), 601-619.doi: 10.1051/cocv:2003029.

    [18]

    M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second Edition, Springer-Verlag, Berlin, 1996.

    [19]

    C. A. Stuart, Bifurcation into spectral gaps, Bull. Belg. Math. Soc., Supplement, (1995).

    [20]

    A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.doi: 10.1016/j.jfa.2009.09.013.

    [21]

    A. Szulkin and T. Weth, The Method of Nehari Manifold, Int. Press, Somerville, MA, 2010.

    [22]

    A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187 (2001), 25-41.doi: 10.1006/jfan.2001.3798.

    [23]

    K. Tanaka, Homoclinic orbits in a first order super-quadratic Hamiltonian system: Convergence of subharmonic orbits, J. Differential Equations, 94 (1991), 315-339.doi: 10.1016/0022-0396(91)90095-Q.

    [24]

    J. Wang, J. X. Xu and F. B. Zhang, Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition, Discrete Contin. Dyn. Syst. Ser. A, 27 (2010), 1241-1257.doi: 10.3934/dcds.2010.27.1241.

    [25]

    M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.

    [26]

    M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620-2627.doi: 10.1016/j.na.2009.11.009.

    [27]

    W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.doi: 10.1007/s002290170032.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return