September  2014, 34(9): 3371-3382. doi: 10.3934/dcds.2014.34.3371

A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity

1. 

Institut de Mathématiques de Toulouse & TSE, Université Toulouse I Capitole, Manufacture des Tabacs, 21, Allée de Brienne, 31015 Toulouse Cedex 6, France

2. 

Instituto de Matemática Interdiciplinar, Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de las Ciencias, 3, 28040 Madrid, Spain

Received  December 2012 Revised  November 2013 Published  March 2014

We prove the compactness of the support of the solution of some stationary Schrödinger equations with a singular nonlinear order term. We present here a sharper version of some energy methods previously used in the literature.
Citation: Pascal Bégout, Jesús Ildefonso Díaz. A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3371-3382. doi: 10.3934/dcds.2014.34.3371
References:
[1]

S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics,, Progress in Nonlinear Differential Equations and their Applications, (2002).   Google Scholar

[2]

P. Bégout and J. I. Díaz, Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity,, Accepted for publication in RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., ().   Google Scholar

[3]

P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations,, Submitted, ().   Google Scholar

[4]

P. Bégout and J. I. Díaz, On a nonlinear Schrödinger equation with a localizing effect,, C. R. Math. Acad. Sci. Paris, 342 (2006), 459.  doi: 10.1016/j.crma.2006.01.027.  Google Scholar

[5]

P. Bégout and J. I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations - The stationary case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 35.  doi: 10.1016/j.anihpc.2011.09.001.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

show all references

References:
[1]

S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics,, Progress in Nonlinear Differential Equations and their Applications, (2002).   Google Scholar

[2]

P. Bégout and J. I. Díaz, Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity,, Accepted for publication in RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., ().   Google Scholar

[3]

P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations,, Submitted, ().   Google Scholar

[4]

P. Bégout and J. I. Díaz, On a nonlinear Schrödinger equation with a localizing effect,, C. R. Math. Acad. Sci. Paris, 342 (2006), 459.  doi: 10.1016/j.crma.2006.01.027.  Google Scholar

[5]

P. Bégout and J. I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations - The stationary case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 35.  doi: 10.1016/j.anihpc.2011.09.001.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[17]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]