• Previous Article
    A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Justification of leading order quasicontinuum approximations of strongly nonlinear lattices
September  2014, 34(9): 3383-3402. doi: 10.3934/dcds.2014.34.3383

On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions

1. 

Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, 230026, Anhui Province, China

Received  August 2013 Revised  December 2013 Published  March 2014

Spacetime convexity is a basic geometric property of the solutions of parabolic equations. In this paper, we study microscopic convexity properties of spacetime convex solutions of fully nonlinear parabolic partial differential equations and give a new simple proof of the constant rank theorem in [11].
Citation: Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383
References:
[1]

O. Alvarez, J. M. Lasry and P. L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7.

[2]

B. J. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307. doi: 10.1007/s00222-009-0179-5.

[3]

B. J. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789. doi: 10.3934/dcds.2010.28.789.

[4]

B. J. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations,, Indiana Univ. Math. J., 60 (2011). doi: 10.1512/iumj.2011.60.4222.

[5]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math. J., 58 (2009), 1565. doi: 10.1512/iumj.2009.58.3539.

[6]

C. Borell, Brownian motion in a convex ring and quasiconcavity,, Comm. Math. Phys., 86 (1982), 143. doi: 10.1007/BF01205665.

[7]

C. Borell, A note on parabolic convexity and heat conduction,, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387.

[8]

C. Borell, Diffusion equations and geometric inequalities,, Potential Anal., 12 (2000), 49. doi: 10.1023/A:1008641618547.

[9]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 281. doi: 10.1215/S0012-7094-85-05221-4.

[10]

L. Caffarelli, P. Guan and X. N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769. doi: 10.1002/cpa.20197.

[11]

C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations,, Acta Mathematica Sinica, 29 (2013), 651. doi: 10.1007/s10114-012-1495-z.

[12]

C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint., ().

[13]

P. Guan, C. S. Lin and X. N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chinese Ann. Math. Ser. B, 27 (2006), 595. doi: 10.1007/s11401-005-0575-0.

[14]

P. Guan and X. N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation,, Invent. Math., 151 (2003), 553. doi: 10.1007/s00222-002-0259-2.

[15]

P. Guan, X. N. Ma and F. Zhou, The Christoffel-Minkowski problem III: Existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352. doi: 10.1002/cpa.20118.

[16]

, P. Guan and X. W. Zhang,, private communication., ().

[17]

F. Han, X. N. Ma and D. M. Wu, The existence of $k$-convex hypersurface with prescribed mean curvature,, Calc. Var. Partial Differential Equations, 42 (2011), 43. doi: 10.1007/s00526-010-0379-2.

[18]

B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation,, Manuscripta Math., 138 (2012), 89. doi: 10.1007/s00229-011-0485-2.

[19]

B. Kawohl, A remark on N.Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93. doi: 10.1002/mma.1670080107.

[20]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687. doi: 10.1512/iumj.1985.34.34036.

[21]

A. U. Kennington, Convexity of level curves for an initial value problem,, J. Math. Anal. Appl., 133 (1988), 324. doi: 10.1016/0022-247X(88)90404-0.

[22]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73. doi: 10.1512/iumj.1983.32.32007.

[23]

N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 32 (1983), 603. doi: 10.1512/iumj.1983.32.32042.

[24]

N. J. Korevaar, Convexity of level sets for solutions to elliptic ring problems,, Comm. Partial Differential Equations, 15 (1990), 541. doi: 10.1080/03605309908820698.

[25]

N. J. Korevaar and J. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19. doi: 10.1007/BF00279844.

[26]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).

[27]

P. Liu, X. N. Ma and L. Xu, A Brunn-Minkowski inequality for the Hessian eigenvalue in three dimension convex domain,, Adv. Math., 225 (2010), 1616. doi: 10.1016/j.aim.2010.04.003.

[28]

X. N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008.

[29]

G. Porru and S. Serra, Maximum principles for parabolic equations,, J. Austral. Math. Soc. Ser. A, 56 (1994), 41. doi: 10.1017/S1446788700034728.

[30]

I. Singer, B. Wong, S. T. Yau and S. S. T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 319.

[31]

F. Treves, A new method of proof of the subelliptic estimates,, Commun. Pure Appl. Math., 24 (1971), 71. doi: 10.1002/cpa.3160240107.

show all references

References:
[1]

O. Alvarez, J. M. Lasry and P. L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7.

[2]

B. J. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations,, Invent. Math., 177 (2009), 307. doi: 10.1007/s00222-009-0179-5.

[3]

B. J. Bian and P. Guan, A structural condition for microscopic convexity principle,, Discrete Contin. Dyn. Syst., 28 (2010), 789. doi: 10.3934/dcds.2010.28.789.

[4]

B. J. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations,, Indiana Univ. Math. J., 60 (2011). doi: 10.1512/iumj.2011.60.4222.

[5]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math. J., 58 (2009), 1565. doi: 10.1512/iumj.2009.58.3539.

[6]

C. Borell, Brownian motion in a convex ring and quasiconcavity,, Comm. Math. Phys., 86 (1982), 143. doi: 10.1007/BF01205665.

[7]

C. Borell, A note on parabolic convexity and heat conduction,, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387.

[8]

C. Borell, Diffusion equations and geometric inequalities,, Potential Anal., 12 (2000), 49. doi: 10.1023/A:1008641618547.

[9]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 281. doi: 10.1215/S0012-7094-85-05221-4.

[10]

L. Caffarelli, P. Guan and X. N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic equations,, Comm. Pure Appl. Math., 60 (2007), 1769. doi: 10.1002/cpa.20197.

[11]

C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations,, Acta Mathematica Sinica, 29 (2013), 651. doi: 10.1007/s10114-012-1495-z.

[12]

C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint., ().

[13]

P. Guan, C. S. Lin and X. N. Ma, The Christoffel-Minkowski problem II: Weingarten curvature equations,, Chinese Ann. Math. Ser. B, 27 (2006), 595. doi: 10.1007/s11401-005-0575-0.

[14]

P. Guan and X. N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation,, Invent. Math., 151 (2003), 553. doi: 10.1007/s00222-002-0259-2.

[15]

P. Guan, X. N. Ma and F. Zhou, The Christoffel-Minkowski problem III: Existence and convexity of admissible solutions,, Comm. Pure Appl. Math., 59 (2006), 1352. doi: 10.1002/cpa.20118.

[16]

, P. Guan and X. W. Zhang,, private communication., ().

[17]

F. Han, X. N. Ma and D. M. Wu, The existence of $k$-convex hypersurface with prescribed mean curvature,, Calc. Var. Partial Differential Equations, 42 (2011), 43. doi: 10.1007/s00526-010-0379-2.

[18]

B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation,, Manuscripta Math., 138 (2012), 89. doi: 10.1007/s00229-011-0485-2.

[19]

B. Kawohl, A remark on N.Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem,, Math. Methods Appl. Sci., 8 (1986), 93. doi: 10.1002/mma.1670080107.

[20]

A. U. Kennington, Power concavity and boundary value problems,, Indiana Univ. Math. J., 34 (1985), 687. doi: 10.1512/iumj.1985.34.34036.

[21]

A. U. Kennington, Convexity of level curves for an initial value problem,, J. Math. Anal. Appl., 133 (1988), 324. doi: 10.1016/0022-247X(88)90404-0.

[22]

N. J. Korevaar, Capillary surface convexity above convex domains,, Indiana Univ. Math. J., 32 (1983), 73. doi: 10.1512/iumj.1983.32.32007.

[23]

N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 32 (1983), 603. doi: 10.1512/iumj.1983.32.32042.

[24]

N. J. Korevaar, Convexity of level sets for solutions to elliptic ring problems,, Comm. Partial Differential Equations, 15 (1990), 541. doi: 10.1080/03605309908820698.

[25]

N. J. Korevaar and J. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians,, Arch. Rational Mech. Anal., 97 (1987), 19. doi: 10.1007/BF00279844.

[26]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).

[27]

P. Liu, X. N. Ma and L. Xu, A Brunn-Minkowski inequality for the Hessian eigenvalue in three dimension convex domain,, Adv. Math., 225 (2010), 1616. doi: 10.1016/j.aim.2010.04.003.

[28]

X. N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, J. Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008.

[29]

G. Porru and S. Serra, Maximum principles for parabolic equations,, J. Austral. Math. Soc. Ser. A, 56 (1994), 41. doi: 10.1017/S1446788700034728.

[30]

I. Singer, B. Wong, S. T. Yau and S. S. T. Yau, An estimate of gap of the first two eigenvalues in the Schrodinger operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 319.

[31]

F. Treves, A new method of proof of the subelliptic estimates,, Commun. Pure Appl. Math., 24 (1971), 71. doi: 10.1002/cpa.3160240107.

[1]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[2]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

[3]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[4]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[5]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[6]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[7]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[8]

Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57

[9]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[10]

Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040

[11]

Chadi Nour, Ron J. Stern, Jean Takche. Generalized exterior sphere conditions and $\varphi$-convexity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 615-622. doi: 10.3934/dcds.2011.29.615

[12]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[13]

Mustapha Ait Rami, John Moore. Partial stabilizability and hidden convexity of indefinite LQ problem. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 221-239. doi: 10.3934/naco.2016009

[14]

Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005

[15]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[16]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[17]

Peng Zhang, Tong Zhang. The Riemann problem for scalar CJ-combustion model without convexity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 195-206. doi: 10.3934/dcds.1995.1.195

[18]

Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007

[19]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[20]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]