• Previous Article
    Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension
  • DCDS Home
  • This Issue
  • Next Article
    On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions
September  2014, 34(9): 3403-3418. doi: 10.3934/dcds.2014.34.3403

Justification of leading order quasicontinuum approximations of strongly nonlinear lattices

1. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9315

3. 

Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Received  March 2013 Revised  November 2013 Published  March 2014

We consider the leading order quasicontinuum limits of a one-dimensional granular medium governed by the Hertz contact law under precompression. The approximate model which is derived in this limit is justified by establishing asymptotic bounds for the error with the help of energy estimates. The continuum model predicts the development of shock waves, which are also studied in the full system with the aid of numerical simulations. We also show that existing results concerning the Nonlinear Schrödinger (NLS) and Korteweg de-Vries (KdV) approximation of FPU models apply directly to a precompressed granular medium in the weakly nonlinear regime.
Citation: Christopher Chong, P.G. Kevrekidis, Guido Schneider. Justification of leading order quasicontinuum approximations of strongly nonlinear lattices. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3403-3418. doi: 10.3934/dcds.2014.34.3403
References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026209.  Google Scholar

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads,, Proceedings of the AMS, 133 (2005), 1763.  doi: 10.1090/S0002-9939-05-07851-2.  Google Scholar

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Comm. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[5]

J. Goodman and P. Lax, On dispersive difference schemes,, Comm. Pure. Appl. Math., 41 (1988), 591.  doi: 10.1002/cpa.3160410506.  Google Scholar

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.021304.  Google Scholar

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S021820251200585X.  Google Scholar

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains,, Nonlinearity, 23 (2010), 277.  doi: 10.1088/0951-7715/23/2/004.  Google Scholar

[9]

H. Hertz, On the contact of elastic solids,, J. Reine Angew. Math., 92 (1881), 156.   Google Scholar

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future,, IMA Journal of Applied Mathematics, 76 (2011), 389.  doi: 10.1093/imamat/hxr015.  Google Scholar

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[13]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics),, Birkhauser, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.056602.  Google Scholar

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4757-3524-6.  Google Scholar

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit,, Physics Letters A, 118 (1986), 222.  doi: 10.1016/0375-9601(86)90170-2.  Google Scholar

[18]

P. Rosenau, Dynamics of dense lattices,, Phys. Rev. B, 36 (1987), 5868.  doi: 10.1103/PhysRevB.36.5868.  Google Scholar

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system,, Appl. Anal., 89 (2010), 1523.  doi: 10.1080/00036810903277150.  Google Scholar

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, International Conference on Differential Equations. Proceedings of the Conference, 1 (1999), 390.   Google Scholar

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain,, Physics Reports, 462 (2008), 21.  doi: 10.1016/j.physrep.2007.10.007.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1983).   Google Scholar

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains,, J. Nonlin. Sci., 22 (2012), 327.  doi: 10.1007/s00332-011-9119-9.  Google Scholar

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression,, Nonlinearity, 26 (2013), 539.  doi: 10.1088/0951-7715/26/2/539.  Google Scholar

show all references

References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026209.  Google Scholar

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads,, Proceedings of the AMS, 133 (2005), 1763.  doi: 10.1090/S0002-9939-05-07851-2.  Google Scholar

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Comm. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[5]

J. Goodman and P. Lax, On dispersive difference schemes,, Comm. Pure. Appl. Math., 41 (1988), 591.  doi: 10.1002/cpa.3160410506.  Google Scholar

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.021304.  Google Scholar

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S021820251200585X.  Google Scholar

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains,, Nonlinearity, 23 (2010), 277.  doi: 10.1088/0951-7715/23/2/004.  Google Scholar

[9]

H. Hertz, On the contact of elastic solids,, J. Reine Angew. Math., 92 (1881), 156.   Google Scholar

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future,, IMA Journal of Applied Mathematics, 76 (2011), 389.  doi: 10.1093/imamat/hxr015.  Google Scholar

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[13]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics),, Birkhauser, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.056602.  Google Scholar

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4757-3524-6.  Google Scholar

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit,, Physics Letters A, 118 (1986), 222.  doi: 10.1016/0375-9601(86)90170-2.  Google Scholar

[18]

P. Rosenau, Dynamics of dense lattices,, Phys. Rev. B, 36 (1987), 5868.  doi: 10.1103/PhysRevB.36.5868.  Google Scholar

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system,, Appl. Anal., 89 (2010), 1523.  doi: 10.1080/00036810903277150.  Google Scholar

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, International Conference on Differential Equations. Proceedings of the Conference, 1 (1999), 390.   Google Scholar

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain,, Physics Reports, 462 (2008), 21.  doi: 10.1016/j.physrep.2007.10.007.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1983).   Google Scholar

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains,, J. Nonlin. Sci., 22 (2012), 327.  doi: 10.1007/s00332-011-9119-9.  Google Scholar

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression,, Nonlinearity, 26 (2013), 539.  doi: 10.1088/0951-7715/26/2/539.  Google Scholar

[1]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[2]

Rua Murray. Approximation error for invariant density calculations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535

[3]

Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

[4]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[5]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[6]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[7]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[8]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[9]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[10]

Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803

[11]

Wolf-Jürgen Beyn, Raphael Kruse. Two-sided error estimates for the stochastic theta method. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 389-407. doi: 10.3934/dcdsb.2010.14.389

[12]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[13]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[14]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[15]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[16]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[17]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[18]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[19]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[20]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (5)

[Back to Top]