• Previous Article
    Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension
  • DCDS Home
  • This Issue
  • Next Article
    On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions
September  2014, 34(9): 3403-3418. doi: 10.3934/dcds.2014.34.3403

Justification of leading order quasicontinuum approximations of strongly nonlinear lattices

1. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9315

3. 

Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Received  March 2013 Revised  November 2013 Published  March 2014

We consider the leading order quasicontinuum limits of a one-dimensional granular medium governed by the Hertz contact law under precompression. The approximate model which is derived in this limit is justified by establishing asymptotic bounds for the error with the help of energy estimates. The continuum model predicts the development of shock waves, which are also studied in the full system with the aid of numerical simulations. We also show that existing results concerning the Nonlinear Schrödinger (NLS) and Korteweg de-Vries (KdV) approximation of FPU models apply directly to a precompressed granular medium in the weakly nonlinear regime.
Citation: Christopher Chong, P.G. Kevrekidis, Guido Schneider. Justification of leading order quasicontinuum approximations of strongly nonlinear lattices. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3403-3418. doi: 10.3934/dcds.2014.34.3403
References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026209.  Google Scholar

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads,, Proceedings of the AMS, 133 (2005), 1763.  doi: 10.1090/S0002-9939-05-07851-2.  Google Scholar

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Comm. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[5]

J. Goodman and P. Lax, On dispersive difference schemes,, Comm. Pure. Appl. Math., 41 (1988), 591.  doi: 10.1002/cpa.3160410506.  Google Scholar

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.021304.  Google Scholar

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S021820251200585X.  Google Scholar

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains,, Nonlinearity, 23 (2010), 277.  doi: 10.1088/0951-7715/23/2/004.  Google Scholar

[9]

H. Hertz, On the contact of elastic solids,, J. Reine Angew. Math., 92 (1881), 156.   Google Scholar

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future,, IMA Journal of Applied Mathematics, 76 (2011), 389.  doi: 10.1093/imamat/hxr015.  Google Scholar

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[13]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics),, Birkhauser, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.056602.  Google Scholar

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4757-3524-6.  Google Scholar

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit,, Physics Letters A, 118 (1986), 222.  doi: 10.1016/0375-9601(86)90170-2.  Google Scholar

[18]

P. Rosenau, Dynamics of dense lattices,, Phys. Rev. B, 36 (1987), 5868.  doi: 10.1103/PhysRevB.36.5868.  Google Scholar

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system,, Appl. Anal., 89 (2010), 1523.  doi: 10.1080/00036810903277150.  Google Scholar

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, International Conference on Differential Equations. Proceedings of the Conference, 1 (1999), 390.   Google Scholar

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain,, Physics Reports, 462 (2008), 21.  doi: 10.1016/j.physrep.2007.10.007.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1983).   Google Scholar

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains,, J. Nonlin. Sci., 22 (2012), 327.  doi: 10.1007/s00332-011-9119-9.  Google Scholar

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression,, Nonlinearity, 26 (2013), 539.  doi: 10.1088/0951-7715/26/2/539.  Google Scholar

show all references

References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026209.  Google Scholar

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads,, Proceedings of the AMS, 133 (2005), 1763.  doi: 10.1090/S0002-9939-05-07851-2.  Google Scholar

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Comm. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[5]

J. Goodman and P. Lax, On dispersive difference schemes,, Comm. Pure. Appl. Math., 41 (1988), 591.  doi: 10.1002/cpa.3160410506.  Google Scholar

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.021304.  Google Scholar

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S021820251200585X.  Google Scholar

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains,, Nonlinearity, 23 (2010), 277.  doi: 10.1088/0951-7715/23/2/004.  Google Scholar

[9]

H. Hertz, On the contact of elastic solids,, J. Reine Angew. Math., 92 (1881), 156.   Google Scholar

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future,, IMA Journal of Applied Mathematics, 76 (2011), 389.  doi: 10.1093/imamat/hxr015.  Google Scholar

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[13]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics),, Birkhauser, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.056602.  Google Scholar

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4757-3524-6.  Google Scholar

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit,, Physics Letters A, 118 (1986), 222.  doi: 10.1016/0375-9601(86)90170-2.  Google Scholar

[18]

P. Rosenau, Dynamics of dense lattices,, Phys. Rev. B, 36 (1987), 5868.  doi: 10.1103/PhysRevB.36.5868.  Google Scholar

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system,, Appl. Anal., 89 (2010), 1523.  doi: 10.1080/00036810903277150.  Google Scholar

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, International Conference on Differential Equations. Proceedings of the Conference, 1 (1999), 390.   Google Scholar

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain,, Physics Reports, 462 (2008), 21.  doi: 10.1016/j.physrep.2007.10.007.  Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1983).   Google Scholar

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains,, J. Nonlin. Sci., 22 (2012), 327.  doi: 10.1007/s00332-011-9119-9.  Google Scholar

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression,, Nonlinearity, 26 (2013), 539.  doi: 10.1088/0951-7715/26/2/539.  Google Scholar

[1]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[12]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[13]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[19]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[20]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (5)

[Back to Top]