-
Previous Article
On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation
- DCDS Home
- This Issue
-
Next Article
Justification of leading order quasicontinuum approximations of strongly nonlinear lattices
Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension
1. | Department of Mathematics, Zhanjiang Normal University, Zhanjiang, Guangdong 524048, China |
References:
[1] |
C. J. Amick and K. Kirchgässner, A theory of solitary water-waves in the presence of surface tension, Arch. Rat. Mech. Anal., 105 (1989), 1-49.
doi: 10.1007/BF00251596. |
[2] |
C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), 633-669.
doi: 10.1098/rsta.1981.0231. |
[3] |
J. T. Beale, Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math., 44 (1991), 211-257.
doi: 10.1002/cpa.3160440204. |
[4] |
B. Buffoni, E. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal., 153 (2000), 241-271.
doi: 10.1007/s002050000087. |
[5] |
B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory, Arch. Ration. Mech. Anal., 146 (1999), 183-220.
doi: 10.1007/s002050050141. |
[6] |
B. Buffoni, M. D. Groves and J. F. Toland, A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers, Philos. Trans. Roy. Soc. London Ser. A, 354 (1996), 575-607.
doi: 10.1098/rsta.1996.0020. |
[7] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[8] |
W. Craig and D. P. Nicholls, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32 (2000), 323-359.
doi: 10.1137/S0036141099354181. |
[9] |
W. Craig and D. P. Nicholls, Traveling gravity water waves in two and three dimensions, EJMB/Fluids, 21 (2002), 615-641.
doi: 10.1016/S0997-7546(02)01207-4. |
[10] |
S. Deng and S. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 42 (2010), 2721-2761.
doi: 10.1137/09077922X. |
[11] |
S. Deng, Two-dimensional travelling waves over a moving bottom, J. Diff. Equa., 248 (2010), 1777-1793.
doi: 10.1016/j.jde.2009.09.005. |
[12] |
S. Deng and S. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 238 (2009), 1735-1751.
doi: 10.1016/j.physd.2009.05.012. |
[13] |
F. Dias and C. Kharif, Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech., 31 (1999), 301-346.
doi: 10.1146/annurev.fluid.31.1.301. |
[14] |
M. D. Groves, An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles, Phys. D, 152/153 (2001), 395-415.
doi: 10.1016/S0167-2789(01)00182-8. |
[15] |
M. D. Groves, Three-dimensional travelling gravity-capillary water waves, GAMM-Mitt., 30 (2007), 8-43.
doi: 10.1002/gamm.200790013. |
[16] |
M. D. Groves and M. Haragus, A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., 13 (2003), 397-447.
doi: 10.1007/s00332-003-0530-8. |
[17] |
M. D. Groves, M. Haragus and S. Sun, A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2189-2243.
doi: 10.1098/rsta.2002.1066. |
[18] |
M. D. Groves and A. Mielke, A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh Sect., 131A (2001), 83-136.
doi: 10.1017/S0308210500000809. |
[19] |
M. D. Groves and S. M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem, Arch. Ration. Mech. Anal., 188 (2008), 1-91.
doi: 10.1007/s00205-007-0085-1. |
[20] |
M. Haragus and K. Kirchgässner, Three-Dimensional steady capillary-gravity waves, in Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems (ed. B. Fiedler), Springer-Verlag, Berlin, (2001), 363-397. |
[21] |
G. Iooss and K. Kirchgässner, Bifurcation d'ondes solitaires en présence d'une faible tension superficielle, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 265-268. |
[22] |
G. Iooss and K. Kirchgässner, Water waves for small surface tension: an approach via normal form, Proc. Royal Soc. Edinburgh Sect., 122A (1992), 267-299.
doi: 10.1017/S0308210500021119. |
[23] |
G. Iooss and M. C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance vector fields, J. Diff. Equ., 102 (1993), 62-88.
doi: 10.1006/jdeq.1993.1022. |
[24] |
G. Iooss and P. Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal., 200 (2011), 789-880.
doi: 10.1007/s00205-010-0372-0. |
[25] |
G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Cambridge Philos. Soc., 83 (1978), 137-157.
doi: 10.1017/S0305004100054372. |
[26] |
Ju. P. Krasovskii, On the theory of steady-state waves of finite amplitude, Comp. Math. Math. Phys., 1 (1961), 836-855. |
[27] |
E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rat. Mech. Anal., 137 (1997), 227-304.
doi: 10.1007/s002050050029. |
[28] |
J. Reeder and M. Shinbrot, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., T.M.A., 5 (1981), 303-323.
doi: 10.1016/0362-546X(81)90035-3. |
[29] |
J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008), 698-744.
doi: 10.1002/cpa.20213. |
[30] |
S. Sun, Existence of a generalized solitary wave solution for water with positive Bond number smaller than 1/3, J. Math. Anal. Appl., 156 (1991), 471-504.
doi: 10.1016/0022-247X(91)90410-2. |
[31] |
S. Sun, Existence of large amplitude periodic waves in two-fluid flows of infinite depth, SIAM J. Math. Anal., 32 (2001), 1014-1031.
doi: 10.1137/S0036141099352728. |
[32] |
V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.
doi: 10.1007/BF00913182. |
show all references
References:
[1] |
C. J. Amick and K. Kirchgässner, A theory of solitary water-waves in the presence of surface tension, Arch. Rat. Mech. Anal., 105 (1989), 1-49.
doi: 10.1007/BF00251596. |
[2] |
C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), 633-669.
doi: 10.1098/rsta.1981.0231. |
[3] |
J. T. Beale, Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math., 44 (1991), 211-257.
doi: 10.1002/cpa.3160440204. |
[4] |
B. Buffoni, E. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal., 153 (2000), 241-271.
doi: 10.1007/s002050000087. |
[5] |
B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory, Arch. Ration. Mech. Anal., 146 (1999), 183-220.
doi: 10.1007/s002050050141. |
[6] |
B. Buffoni, M. D. Groves and J. F. Toland, A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers, Philos. Trans. Roy. Soc. London Ser. A, 354 (1996), 575-607.
doi: 10.1098/rsta.1996.0020. |
[7] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[8] |
W. Craig and D. P. Nicholls, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32 (2000), 323-359.
doi: 10.1137/S0036141099354181. |
[9] |
W. Craig and D. P. Nicholls, Traveling gravity water waves in two and three dimensions, EJMB/Fluids, 21 (2002), 615-641.
doi: 10.1016/S0997-7546(02)01207-4. |
[10] |
S. Deng and S. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 42 (2010), 2721-2761.
doi: 10.1137/09077922X. |
[11] |
S. Deng, Two-dimensional travelling waves over a moving bottom, J. Diff. Equa., 248 (2010), 1777-1793.
doi: 10.1016/j.jde.2009.09.005. |
[12] |
S. Deng and S. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 238 (2009), 1735-1751.
doi: 10.1016/j.physd.2009.05.012. |
[13] |
F. Dias and C. Kharif, Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech., 31 (1999), 301-346.
doi: 10.1146/annurev.fluid.31.1.301. |
[14] |
M. D. Groves, An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles, Phys. D, 152/153 (2001), 395-415.
doi: 10.1016/S0167-2789(01)00182-8. |
[15] |
M. D. Groves, Three-dimensional travelling gravity-capillary water waves, GAMM-Mitt., 30 (2007), 8-43.
doi: 10.1002/gamm.200790013. |
[16] |
M. D. Groves and M. Haragus, A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., 13 (2003), 397-447.
doi: 10.1007/s00332-003-0530-8. |
[17] |
M. D. Groves, M. Haragus and S. Sun, A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2189-2243.
doi: 10.1098/rsta.2002.1066. |
[18] |
M. D. Groves and A. Mielke, A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh Sect., 131A (2001), 83-136.
doi: 10.1017/S0308210500000809. |
[19] |
M. D. Groves and S. M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem, Arch. Ration. Mech. Anal., 188 (2008), 1-91.
doi: 10.1007/s00205-007-0085-1. |
[20] |
M. Haragus and K. Kirchgässner, Three-Dimensional steady capillary-gravity waves, in Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems (ed. B. Fiedler), Springer-Verlag, Berlin, (2001), 363-397. |
[21] |
G. Iooss and K. Kirchgässner, Bifurcation d'ondes solitaires en présence d'une faible tension superficielle, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 265-268. |
[22] |
G. Iooss and K. Kirchgässner, Water waves for small surface tension: an approach via normal form, Proc. Royal Soc. Edinburgh Sect., 122A (1992), 267-299.
doi: 10.1017/S0308210500021119. |
[23] |
G. Iooss and M. C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance vector fields, J. Diff. Equ., 102 (1993), 62-88.
doi: 10.1006/jdeq.1993.1022. |
[24] |
G. Iooss and P. Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal., 200 (2011), 789-880.
doi: 10.1007/s00205-010-0372-0. |
[25] |
G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Cambridge Philos. Soc., 83 (1978), 137-157.
doi: 10.1017/S0305004100054372. |
[26] |
Ju. P. Krasovskii, On the theory of steady-state waves of finite amplitude, Comp. Math. Math. Phys., 1 (1961), 836-855. |
[27] |
E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rat. Mech. Anal., 137 (1997), 227-304.
doi: 10.1007/s002050050029. |
[28] |
J. Reeder and M. Shinbrot, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., T.M.A., 5 (1981), 303-323.
doi: 10.1016/0362-546X(81)90035-3. |
[29] |
J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008), 698-744.
doi: 10.1002/cpa.20213. |
[30] |
S. Sun, Existence of a generalized solitary wave solution for water with positive Bond number smaller than 1/3, J. Math. Anal. Appl., 156 (1991), 471-504.
doi: 10.1016/0022-247X(91)90410-2. |
[31] |
S. Sun, Existence of large amplitude periodic waves in two-fluid flows of infinite depth, SIAM J. Math. Anal., 32 (2001), 1014-1031.
doi: 10.1137/S0036141099352728. |
[32] |
V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.
doi: 10.1007/BF00913182. |
[1] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[2] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[3] |
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 |
[4] |
Yu-Hao Liang, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a one-dimensional Dirichlet-Neumann problem with a specific cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1075-1105. doi: 10.3934/dcds.2020071 |
[5] |
Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731 |
[6] |
Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043 |
[7] |
Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001 |
[8] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[9] |
Dmitri Scheglov. Growth of periodic orbits and generalized diagonals for typical triangular billiards. Journal of Modern Dynamics, 2013, 7 (1) : 31-44. doi: 10.3934/jmd.2013.7.31 |
[10] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[11] |
Anthony W. Baker, Michael Dellnitz, Oliver Junge. Topological method for rigorously computing periodic orbits using Fourier modes. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 901-920. doi: 10.3934/dcds.2005.13.901 |
[12] |
Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629 |
[13] |
Harry Dankowicz, Jan Sieber. Sensitivity analysis for periodic orbits and quasiperiodic invariant tori using the adjoint method. Journal of Computational Dynamics, 2022, 9 (3) : 329-369. doi: 10.3934/jcd.2022006 |
[14] |
P.E. Kloeden. Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Communications on Pure and Applied Analysis, 2004, 3 (2) : 161-173. doi: 10.3934/cpaa.2004.3.161 |
[15] |
Fatima Ezzahra Lembarki, Jaume Llibre. Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1165-1211. doi: 10.3934/dcdss.2015.8.1165 |
[16] |
Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181 |
[17] |
Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks and Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483 |
[18] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889 |
[19] |
Weisheng Wu. Modified Schmidt games and non-dense forward orbits of partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3463-3481. doi: 10.3934/dcds.2016.36.3463 |
[20] |
Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations and Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]